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1 Inequalities

Algebraic solutions
Remember that if you multiply both sides of an inequality by a negative number, you must turn
the inequality signround: 2x > 3 = -2x < -3.

A difficulty occurs when multiplying both sides by, for example, (x — 2); this expression is
sometimes positive (x > 2), sometimes negative (X < 2) and sometimes zero (x = 2). In this case
we multiply both sides by (x — 2)?, which is always positive (provided that x # 2).

2
Example 1:  Solve the inequality 2x + 3 < xxTZ X #2

Solution: Multiply both sides by (x — 2)? we can do this since (x - 2) #0
= x+3)(x—2)?<x%(x-2) DO NOT MULTIPLY OUT
= (2x+3)(x—2)?—x%2(x—-2)<0 1l /
= (x—-2)2x2—-x-6—x2)< 0 13 =) (x-2)(x-3)
= (x-2)(x-3)x+2)< 0 :
= x< =2, or 2<x <3, below x-axis :
7‘2 -1 s 1 2 3 4 :
Note — care is needed when the inequality is < or >.
. . x 2
Example 2:  Solve the inequality 1 > o3’ X #-1, x#-3
Solution: Multiply both sides by (x + 1)%(x + 3)* which cannot be zero
=  x(x+Dx+3)? =2(x+3)(x+ 1)? DO NOT MULTIPLY OUT
= x(x+DE+3)2-2(x+3)x+1D? =0 oV
= (x+Dx+3)x?>+3x—2x—-2)=0 y=0c+3)0cr2) et ) (x1) i
\ 4|
= x+Dx+3)x+2)(x—1)=0 T N
from sketch it looks as though the solution is _i
x<—-3 or —2<x<-1or x2=1 :2

BUT since x# -1, x+ -3,

the solution is x< -3 or —2<x<-1 or x=1, above the x-axis
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Graphical solutions

Example 1:

Use your sketch to solve the inequality

2X
— > Xx-2
x+3

y=2x/(x+3)

10

A~ O o

On the same diagram sketch the graphs of y = x% and y = x — 2.

Solution: First find the points of intersection of the two graphs
= % =X-2
= 2x=x24+x—-6
= 0=x-3)(x+2) /
= x=-—2or3

N

From the sketch we see that

x<—3 or —2<x<3. Notethat x=-3

-10 -8 -6 -4 | -2

/-e

For inequalities involving |2x —5| etc., it is often essential to sketch the graphs first.

Example 2:  Solve the inequality |x*— 19| < 5(x — 1).
Solution:

To find the point A, we need to solve

It is essential to sketch the curves first in order to see which solutions are needed.

—(x?-19)=5x—5 = x’>+5x—24=0 \ w0}’
= (x+8)x®-3)=0 = x=-8or3 J=h 1ol B
From the sketch x#-8 = x=3 A
~10 -5 // 5 1)(()
To find the point B, we need to solve y=5/(x-1_)20

+(x?—-19)=5x—-5 = x?-5x—-14=0

= (x-7)x+2)=0 = x=-2o0r7

Fromthe sketch x#-2 = x=7

— the solution of [x*-19| < 5(x—1) is 3<x<7
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2 Series — Method of Differences

The trick here is to write each line out in full and see what cancels when you add.

Do not be tempted to work each term out — you will lose the pattern which lets you cancel when
adding.

Example 1:  Write in partial fractions, and then use the method of differences to find

r(r+1)
1

n 1 1 1 1
the sum E bt .
r=1 r(r+1) 1x2  2X3  3%x4 n(n+1)

. 1 1 1
Solution: = = - —
r(r+1) r r+1
1 1 1
put r=1 = T = 1 _/ﬂ >
_ 1 _ 1t 1
put r=2 = 2%3 ) 713
_ N VAR
put r=3 = xa = 3 a7
etc. L=
1 1 & 1
put r=n = = = - —
n(n+1) n n+1
, e 1 n
adding = Z = - =
- r(r+1) n+1 n+1
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Example 2:  Write —————— in partial fractions, and then use the method of differences to
r(r+1)(r+2)
n
. 1 1 1 1 1
find the sum z = + ot =
r=1 rr+1)(r+2) 1X2X3  2%X3%X4  3X4X5 n(n+1)(n+2)
. 2 1 2
Solution: —_— = - - — + —
r(r+1)(r+2) T r+1 r+2
2 1 2 1
put r=1 = 1X2%3 -1 2 -l:’ﬂg
L
2 1 2 1
utr=2 = ea -z .73 tm
2 120
putr=3 = s T~ 3 1 75
_ 2 o1l 2B g
put r=4 = 4X5%6 4 715 4:/776
i L
etc.
/ﬂ /ﬂ
drenl— 2 o aF__2F 1
P - (n-1)n(n+1) T on-1 ,”n n+1
_ 2 _ el 2 1
put r=n = nn+1)(n+2) o n n+1 n+2
n
IR N SR S P -
R T LD+ 1272 n+1 n+l1 n+2
-1, 1
T2 n+l o n+2

n?+3n+2-2n—4+2n+2
2(n+1)(n+2)

n%+3n

2n+1(n+2)

n%+3n

2

- Zr(r+1)(r+2) -
C 1

= Zr(r+1)(r+2) B

1

4n+1(n+2)
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3  Complex Numbers

Modulus and Argument

A
The modulus of z=x+1y isthe length of z r

= r=]z| =/x%24+y2 z

and the argument of z is the angle made by z r
with the positive x-axis, -z < argz < .

X
N.B. arg z is not always equal to tan™?! (%)

Properties
Z=rcos@ +irsindg

Z

w

_ 12l

|zw| = |z||w]|, and
(w|

arg (zw) = argz + argw, and arg (%) = argz — argw

Euler’s Relation e’

z=e"” = cosf+isind
i =e " =cos@ - ising
Eal :
Example: Express 5e\+/ inthe form x +iy.
Solution: Se(BTn) = 5(cos (3—n) + i sin (3—n))
' 4 4
= __Sﬁ + l5_\/§
2 2

Multiplying and dividing in mod-arg form

rel® x sei® = rsei@+d)

= (rcosf+irsinf) x(scos¢p +issing) = rscos(0 + ¢) + irssin(f + ¢)

and

ret® = sei® = L oi0-9)
S

= (rcos@+irsinf) +~ (scos¢ +issing) = Ecos(9—¢)+ i Esin(@—q’))

FP2 OCT 2016 SDB
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De Moivre’s Theorem
(re®®)" = rme® = (rcosf+irsinf)" = (r"cosnd + i r" sinnf)
Applications of De Moivre’s Theorem
Example: Express sin 5@ interms of sin @ only.
Solution: From De Moivre’s Theorem we know that
cos 50 + isin560 = (cos @+ isin 6)°
= €0s°0 +5i cos’@ sin@ + 10i° cos> @ sin*0 + 10i° cos?@ sin’0 + 5i* cosd sin*O + i° sin°@
Equating imaginary parts
=  sin560 = 5c0s*@ sind — 10 cos?0 sin®0 + sin°@
= 5(1 —sin’0)?sind — 10(1 —sin?d) sin*@ + sin° 0
= 16sin°0 — 20sin’0 + 5sind
z" +Zln = 2cosnf and z" —Zln =2isinnf
Z = cos@ +isind
= z™ = (cos@ +isinfB)" = (cosnf + i sinnb)
and - = z" = (cos@ +isinf)™ = (cosnb — i sinnbh)

from which we can show that
(z+§) =2cosf and (Z—é) = 2isin@

1 1 ..
z”+z—n=2003n9 and z”—z—n=2|smn0

Example: Express sin°6 interms of sin56, sin36 and sind.

Solution: Here we are dealing with siné@, so we use

(2isin§)°> = (z — ;)5

= 32i°sin°f = z°— 5z* (i) + 1023 (Ziz) —10z2 (Z%) + 5z (Z%) - (i)

ZS
= 32isin°f = <Z5—Z—15)—5(z3—zi3)+ 10(2_3

= 32isin®0 = 2isin50 - 5x2isin39 +10 x 2ising

= sinfg = 1—16 (sin50 — 5sin 30 + 10 sin 8)
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n™ roots of a complex number

The technique is the same for finding n™ roots of any complex number.

Example: Find the 4™ roots of 8v2 + 8v2i, and show the roots on an Argand Diagram.

Solution: We need to solve the equation  z*= 8v2 + 8v2i

1. Let z = rcosd +irsind
= ' = r*(cos40 +isin46)

. |8V2+8V2i|=8V2+2=16 and arg (8V2 +8V2i) :%
= 8/2+8V2i= 16(cos7 +isin?)

3. Then z*=8V2 +8V2i

N

becomes r*(cos40 +isin46) = 16(cos’ +isin7)
= 16(cos = +isin = adding 2z
4 4
= 16 (cos T+ isin - adding 27
4 4
= 16 (cos 2T 4isinZE adding 27
4 4

4, = r*=16 and 49 =Z,6 T T BT
) 4’ 4’ 4 ' 4
- r =2 and @=L, & Ur_ZIr DBrT_ZM.  _cagzr<nx
16 16 16 16 16 16
5. =  rootsare z7=2(cos= +isin=) = 1.962 + 0390 i
16 16
,=2(cos = +isinX) = -—0.390+1.962i
16 16
z5=2(cos = +isin—/=X) = -1.962 —0-390i
16 16
22=2(cos == +isin==) = 0-390-1.962 i
16 16
y
Zyt 2
Notice that the roots are symmetrically placed around
the origin, and the angle between roots is %T” = g z4
-2
The angle between the n™ roots will always be 27” : %3
=1
Za
-2 o

For sixth roots the angle between roots will be 2?” = g , and so on.
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Roots of polynomial equations with real coefficients

1. Any polynomial equation with real coefficients,
ApX™ + Ay 1 X"+ @ x™ %+ apx?+ agx+ ag=0, ... (1)
where all a; are real, has a complex solution

2. = any complex n" degree polynomial can be factorised into n linear factors over the
complex numbers

3. If z=a+ib isarootof (I), then its conjugate, a—ib is also a root — see FP1.

4. By pairing factors with conjugate pairs we can say that any polynomial with real
coefficients can be factorised into a combination of linear and quadratic factors over the
real numbers.

Example: Giventhat 3—-2i isarootof z°—572+7z+13=0
@ Factorise over the real numbers
(b) Find all three real roots

Solution:
(@ 3-2i isaroot = 3+ 2i isalso aroot
=  (z-(B-2)(z-(B+2i) = (Z-6z +13) isa factor
= Z3 - 522 +7z+13 = (22 -6z + 13)(2 + 1) by inspection

(b) = rootsare z = 3-2i, 3+2i and -1

Loci on an Argand Diagram

Two basic ideas

1. |z—wl isthe distance from w to z.
2. arg (z— (1 +1)) isthe angle made by the half line joining (1+i) to z, with the x-axis.

Example 1:
|z—2—-il =3 isacircle with centre (2 + i) and radius 3
Example 2:
y
lz +3-i| = [z-2+i]

o lz -3+ = lz-2-)]

is the locus of all points which are equidistant from
the points

A (-3,1) and B (2, -1), and so is the perpendicular
bisector of AB.
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Example 3:

arg (z —4) :5?” is a half line, from (4, 0),

making an angle of 5?” with the x-axis.

N/w B

Example 4: -4 -3 -2 -1 1 2

|z—3] = 2| z+2i| isacircle
(Apollonius’s circle).

To find its equation, put z=x + iy

= |(x=3)+iyl = 2|x+i(y+2)] square both sides
= (x=37+y* = 4(xX+(y+2?) leading to

= 3 +6x+3y*+16y+7 = 0

~ e (peY =2

which is a circle with centre (-1, _?8 ), and radius @ :

Example 5:
z—2\ _ n
g (55) = %
= arg(z—2) —arg(z+5) = g

=X 9—¢:§

which gives the arc of the circle as shown.

N.B.

The corresponding arc below the x-axis

would have equation

z—=2\ _ T
A\~ T %

as 6 — ¢ would be negative in this picture.

(@1is a ‘larger negative number’ than ¢.)
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Transformations of the Complex Plane

Always start from the z-plane and transform to the w-plane, z=x+ iy and w=u + iv.

Example 1:  Find the image of the circle |z—5| =3
under the transformation w = — .

z—2
Solution: First rearrange to find z

1 1 1
W= — = 7-2=— = 1=—+2
2 w w

Z—

Second substitute in equation of circle

=  [F+2-5|=3 = |[E¥=3
= |1-3w=3w = 3fi-w|=3wl
o=

which is the equation of the perpendicular bisector of the line joining 0 to %

= the image is the line u ==
Always consider the ‘modulus technique’ (above) first;
if this does not work then use the u + iv method shown below.
Example 2:  Show that the image of the line x + 4y = 4 under the transformation

1 . . . . .
w=-— isa circle, and find its centre and radius.

Solution: Firstrearrangetofindz = z= % +3

The ‘modulus technique’ is not suitable here.

z=x+iy and w=u+iv

1 1 1 u-—iv
= - = — X ——
u+iv u+iv  u-iv

u—iv
u2+v?

+ 3

= X+iy =

u
uZ+p?2

-v
u2+v?

Equating real and imaginary parts X = +3and y =

+3 -2 =4

+4y = _—
= x+4y=4 becomes ——; o

= W—u+V+4 =0

= (u—%)2+(v+2)2=14—7

which is a circle with centre G —2) and radius \%_7 .

There are many more examples in the book, but these are the two important techniques.
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Loci and geometry

It is always important to think of diagrams.

Example: z lies on the circle |z - 2i| = 1.
Find the greatest and least values of arg z.

Solution: Draw a picture!

The greatest and least values of arg z
will occur at B and A.

Trigonometry tells us that

0=

o8

and so greatest and least values of

v

21T T
argz are — and 3

FP2 OCT 2016 SDB
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4  First Order Differential Equations

Separating the variables, families of curves
Example: Find the general solution of

ay _ v
dx  2x(x+1)’

for x>0,

and sketch some of the family of solution curves.

S ay _ ¥ 2 _ 1 - i__1
Solution: dx 2x(x+1) = fy dy fx(x+1) dx J-x x+1 dx
= 2lny = Inx = In(x+1) + InA
2 _ Ax
= Y =

Thus for varying values of A and for x>0, we have

y
yETXI(X+1) ™
2 <
y?=3x/(x+1)
1 y2=x/(x+1)

Exact Equations

In an exact equation the L.H.S. is an exact derivative (really a preparation for Integrating
Factors).

Example: Solve sin x 3—3: + ycosx = 3x?
Solution: Notice that the L.H.S. is an exact derivative
. dy — .
sinx — +ycosx = dx(ysmx)
2

d : _
= a(ysmx) = 3X

= ysinx =3¢ dx = x* +¢

x3+c

= y - sin x
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Integrating Factors

z—i’ +Py = Q where P and Q are functions of x only.

In this case, multiply both sides by an Integrating Factor, R = eJ?d*,
The L.H.S. will now be an exact derivative, ;—x (Ry).
Proceed as in the above example.

Example: Solve xj—z +2y =1
Solution: First divide through by x
= v + Ey = 1 now in the correct form
dx X X

. . f2d 2
Integrating Factor, I.F.,is R = e/Pdx = lx® = g2Inx —

d
= Xzﬁ +2Xy = X multiplying by x?
d , o _ . o
= a(x y) = X, check that it is an exact derivative
2 x?
=  Xy=Jxde=-+c¢
_ 1, c
= y = 2 +x2

Using substitutions
Example 1:  Use the substitution y =vx (where v isa function of x) to solve the equation

dy _ 3yx?+y3

dx x3+xy?
. a dav
Solution: y=w = Z=v+x=
dx dx
d 3yx2+y3 dv 3(vx)x%+ (vx)3 3v+v3
N @ _ 3yxTHyT T o 30Xt ex)”
dx x3+ xy? dx x3+ x(vx)? 1+v2

and we can now separate the variables

dv 3v+ v3 3v+v3-v -3 2v
= X— = — v = =
dx 1+v2 1+v2 1+v2
1+v2 dv 1
= = 2 = =
2v dx X
1 v 1
= —+-dv = | =dx
J%+3 I
1 v?2
= -lnv+ — = Inx +¢c
2 4
y 1,y y?
But v== = =-In=+ =5 =Inx+c¢
X 2 X 4x
2 2 _ py2 ) . .
= 2X“Iny +y*=6x"Inx + c’x c’is new arbitrary constant

and | would not like to find y!!!

If told to use the substitution v = % rewrite as y = vx and proceed as in the above example.
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Example 2:

Solution:

Example 3:

=

Use the substitution y = i to solve the differential equation

ay _ .2
Pl 4 + ycotx.

1 - dy _ -1dz
y_z dx  z2 dx
-1 dz 1 1
— — = — + -cotx
z2 dx z2 z
dz
—+ zcotx = —1
dx

Integrating factor is R = e/ cotx dx = pln(sinx) — gjpy x

=

Solution:

=

But z=x+y = tan(xT)zx+c

. dz .

Sinx — +zZcosx = —sInx
dx

d . .

—(zsinx) = —sinx

dx

Zsinx = cosx + ¢

cosx+c

sin x

sin x

cosx+c

Use the substitution z = x +y to solve the differential equation

o cos(x +y)

dx_

dz dy
= + _—= —_
Z=X+Yy = 1+dx
d
2 = 1+cosz
dx
1] dz= [dx
1+cosz

[ =sec? (5) dz = x+c
2 2

tan(g) =x+c

+y

check that it is an exact derivative

but z =

separating the variables

Z Z
1+cosz = 1+2c052(5) -1= Zcosz(z)

16
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5 Second Order Differential Equations

Linear with constant coefficients

2
a% + bZ—z + cy = f(x) where a, b and ¢ are constants.

(1) when f(x)=0

First write down the Auxiliary Equation, A.E

AE.

am?+ bm+c=0

and solve to find the roots m = «a or f8

(i)

(if)

(i)

Example 1:

Solution:

VRN

Example 2:

Solution:

Uyl

If « and B are both real numbers, and if a # 8
then the Complimentary Function, C.F., is
y =Ae® + Bef* where A and B are arbitrary constants of integration

If « and B are both real numbers, and if a« = 8
then the Complimentary Function, C.F., is
y =(A+ Bx)e*, where A and B are arbitrary constants of integration

If « and B are both complex numbers, and if « =a +ib, f =a—ib
then the Complimentary Function, C.F.,
y = e**(Asinbx + B cos bx),
where A and B are arbitrary constants of integration
d?y dy _
Solve IxZ + 2; —3y =0
AE.is m?+2m—-3=0
(m-1)(m+3)=0

m =1 or -3

y = Ae* + Be 3 when f (x) = 0, the C.F. is the solution
d*y dy _

Solve ) + 6; + 9y =0

AE.is m*+ 6m+9= 0

(m+3)2=0

m = -3 (and -3) repeated root

y = (A + Bx)e™3* when f (x) = 0, the C.F. is the solution

FP2 OCT 2016 SDB
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d*y dy

Example 3:  Solve —Z Tt At 13y =0

d

Solution: AE.is m*+ 4m+13= 0
=  (m+2)>=-9=(3i)
=  (Mm+2)= +3i
= m=-2-3i or —2+3i
= y = e ?*(Asin3x + B cos3x) when f (x) = 0, the C.F. is the solution

18

(2) when f (x) # 0, Particular Integrals
First proceed as in (1) to find the Complimentary Function, then use the rules below to
find a Particular Integral, P.I.

Second the General Solution, G.S. , is found by adding the C.F. and the P.I.

= GS. =CF + P.L

Note that it does not matter what P.l. you use, so you might as well find the easiest,
which is what these rules do.

(1) f(x) =€
Try y = Ae®
unless e** appears, on its own, in the C.F., in which case try y = Cxe®
unless xe** appears, on its own, in the C.F., in which case try y = Cx%"*.

2 f(x) =sinkx or f(x) = coskx

Try y=Csinkx + D coskx
unless sin kx or cos kx appear in the C.F., on their own, in which case
try y=x(Csinkx + D coskx)

3 f (x) = apolynomial of degree n.

Try f(X) = apx™ 4+ a1 x" 1+ apx" 2+ .+ ax+ aq
unless a number, on its own, appears in the C.F., in which case

try f(X) = x(@x™+ a1 x™ 1+ ap_x"+ L+ ax+ ag)
i.e. try f(x) =apolynomial of degree n.

4 In general

to find a P.1., try something like f (x), unless this appears in the C.F. (or if there is
a problem), then try something like x f (x).
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: 2’y ay _
Example 1:  Solve Freiis 6dx + 5y = 2x
Solution: AE. is m+6m+5=0
= (m+5)(mM+1)=0 = m=-5 or -1
= CF.is y=A4e™>* + Be™

Forthe P.l.,try y=Cx+ D

d d?
= =¢ and 22L=0
dx dx?

Substituting in the differential equation gives
0 + 6C + 5(Cx+D) =2x

= 5C=2 comparing coefficients of x
2
= C=-
5
and 6C + 5D =0 comparing constant terms
-12
= D=—
25
. 2 12
= P.|.|Sy—gx—g
= GS.is y=Ae 5 + Be‘x+§x—%
. d y dy 3x
Example 2:  Solve S = 6; + 9y = e
Solution: AE.is is m’—6m+9=0
= Mm-3?=0
= m=3 repeated root
= CF.is y=(Ax + B)e3*

In this case, both e3* and xe3* appear, on their own, in the C.F.,
soforaP.l.wetry y = Cx?%e3*

d
= 2 = 2Cxe3* + 3Cx%e3*
dx
d%y
dx?

and = 2Ce3* + 6Cxe3* + 6Cxe3* + 9Cx?e3*

Substituting in the differential equation gives

2Ce3* + 12Cxe3* + 9Cx?e3* — 6(2Cxe>* + 3Cx%e3*) + 9 Cx2e3* = e3*
2Ce3* = 3%

c=1:
2

- 1
Plis y= 5x2e3x

u v Ul

G.S.is y = (Ax + B)e3* + %x2e3x
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2
Example 3:  Solve d—f — 3% 4 2x =4cos2t
dt dt
giventhat x=0and x =1 when t=0.
Solution: AE.is m*-3m+2=0
= m = 1lor2
= C.F.is x = Aet + Be?
Forthe P.l.try x = Csin2t + D cos2t BOTH sin 2t AND cos 2t are needed
= X = 2Ccos2t —2Dsin 2t
and X¥ = —4Csin2t — 4D cos2t

20

Substituting in the differential equation gives

(—4Csin 2t — 4D cos 2t) — 3(2C cos 2t — 2D sin 2t) + 2(C sin 2t + D cos 2t) = 4 cos 2t

= -2C+6D=10 = -C+3D=0 comparing coefficients of sin 2t
and -6C-2D =4 = 3C+D =-2 comparing coefficients of cos 2t
= c==and D=2
5 5
= P.l.is x=—§sin2t—§c052t
= G.S.is x = Aet + Be? — %sin 2t — écos 2t
= x = Aet + ZBQZt—SCOSZt-I- EsinZt
x=0and when t=0 :>O:A+B—§

and x =1 when t=0 :>1:A+2B_§

=

=

-9

A:? and B =2

. -9 6 . 2
solutionis x = ?et + 2e?%t — -sin 2t — S cos 2t
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2 4%y dy —
D.E.s of the form ax”— + bx——+ cy = fx)

Substitute x=#e

dx u du 1
= — = e =X = —_— =
du dx X
d d d
and Z=Zx =
dx du dx
d 1d dy dy
= 2= & X = =
dx x du dx du
d
ey _aay 14
dx2 x2 du x dx
2 d dy/
Loy gy 194 a
dx? x2du x du dx
a2 1d 1 d?
= ay_ _tay, tay
dx? x2du = x2du?
L ady @y ay
dx? du? du
d? d? d d
Thuswe have x252 = 22 - 2 gnd x 2 = 2
dx? du? du dx

u

from I and 11

substituting these in the original equation leads to a second order D.E. with constant

coefficients.
2
Example: Solve the differential equation xZ%
Solution: Using the substitution x =€", and proceeding as above
2 d’y _ d?y dy dy _ dy
x*— = —— — and x—= = =
dx du du dx du
dty _ dy _ gdy _ g2
= Tz T 3du + 3y = —2e
dz_y — d_y — 2u
= Tz 4du + 3y = —2e
= AE.is m*-4m+3=0
= (m=-3)(m-1) =0 = m=3or1l
— CF.isy = Ae® + Be"

For the P.I. try y = Ce®

U

Uyl

2
D= 2ce® and XL = 4Ce

du du?
4Ce?* — 8Ce?* + 3Ce?® = —2e%u
C=2

G.S.isy = Ae™ + Be" + 2%

But x=¢" = GS.isy = A¢ + Bx + 2xX°

- v — 9,2
3xdx+3y— 2x°.
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1)

2)

3)

4)

22

Maclaurin and Taylor Series

Maclaurin series

FC) = FO+ 2f 0+ SO+ 57O+ +

Taylor series

fa+a) = f@+ xf' @+ =f

”(a)+ Z_Tflll(a)_l_”_

Taylor series — as a power series in (x —a)

replacing x by (x—a) in2) we get

X

N

o) -

f@) = f@) + (- a)f (@) + EL @)+ EL (@) + o+ D (g 4o

Solving differential equations using Taylor series

@) If we are given the value of y when x =0, then we use the Maclaurin series with

f(0) = v,
)

the value of y when x=0

the value of

d

dx

Yy

when x=0

etc. to give
oy = ay X (dy\ X (dyy (AN
f) =y = yo+x (dx)o t (dxz)o BT (dx3)0 Tt (dx")o +
(b) If we are given the value of y when x = a, then we use the Taylor power series
with
f(a) = Ya the value of y when x=a

F@= (),

etc. to give

Y=yt - (2) +

a

(x—a)?

2!

d
the value of ﬁ when x=a

(

2’y

dx?

).+

(x—a)3

3!

(

d3y
dx3

)+

NOTE THAT 4 (a) and 4 (b) are not in the formula book, but can easily be found

using the results in 1) and 3).
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Standard series

2 3 n
eX=1+x++ = 4o+ Tt

n!

i _ X x_s _. _qyn—1 X1
sinx =x— —+ 5 + (1) =y
ST SO S QD BV S B St
cosx =1 =T T + (-1) (2n—2)!+
2 3 n
In(1+x)=x—>+Z - + (D1 4.
2 3 n
(1+x)"= 1+nx+—n(r;'_1)x2+---+ "

n(n-1)..(n-r+1) X"

converges for all real x

converges for all real x

converges for all real x

converges for -1 <x <

+ - converges for -1 <x<

Example 1:  Find the Maclaurin series for f(x) = tan x, up to and including the term in x°

Solution: f(x) =tanx
= f'(x) =sec?x
= f"(x) = 2sec?xtanx

= f"(x) = 4sec® xtan® x + 2sec* x

=

=

=

=

f ©=0
fr0)=1
f") =0
f'(0) =2

and  fO)= fO)+ 2O+ f70) +Zf"0) + - + Zfr(0) + ..

2 3
= tanx = 0+x><1+z—'><0+ J;—'><2

x3

3

IR

= tan x x +

up to the term in x*

Example 2:  Using the Maclaurin series for €* to find an expansion of ex+a? up to and

including the term in .

2 3
Solution: e*=1+x+ % + ’;—' + ..

= eX+x? = 14+ (x+x3)+

(x+xz)2 n (x+xz)3

2! 31
2 3 3
~ o x242x3+4 | X34
= 14+x+x°+ o + 3
2 3 7
= eXtx 51+x+5x2+gx3
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up to the term in X3

up to the term in X3

1

1
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Example 3:  Find a Taylor series for cot (x + %) up to and including the term in X%

Solution: f(x) = cotx and we are looking for
T\ _ T (T x2 (T
fe+d) =r Q)+ (G)+ 5 ()
s
f(x) = cotx = f(Z) =
= f'(x) = —cosec? x = f' (E) =_2
4
= f"(x) = 2cosec? x cotx = " (%) =4
2
= COt(x+E) = 1-2x+ = x4 up to the term in x?
4 2!
= cot (x + %) = 1—2x+ 2% up to the term in x?

Example 4:  Use a Taylor series to solve the differential equation,

2 2
y% + (z—i’) +y=0 equation |
up to and including the term in X, given that y =1 and % = 2 when x=0.

In this case the initial value of x is 0, so we shall use

fe) = fO)+ xf'(0) + gf”(0)+ ’;—Tf’”(o)+--- + %f"(0)+---

= v =ywrx(g), + 503, 56,

We already know that y, =1 and (Z—i’) =2 values when x = 0
0

ey (_i(@ ) - _

= (E)o = ( y(dx) 1)0 = -5 values when x =0
- a2y | (dy)? _
equation | Yozt (E) +y=0
3 2 2
Differentiating = y% + %X% + 23—3{’><%+ % =0
ituti -1 (®) = 2yy - _ i}

Substituting yo =1, (dx)o =2 and (de)o = -5 values when x = 0

d3 - _
- (d—xﬁ)o+2 X(T5)+2x2x(5)+ 2= 0

- (@),

2
= solutionis y=1+2x+ 2 x(75) + 3-x28

= y=142x— 2x? 41243
2 3
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Series expansions of compound functions

Example: Find a polynomial expansion for
COoS 2x . . .
: up to and including the term in x°.
1-3x
Solution: Using the standard series
2
cos2x = 1— % + - up to and including the term in x®
-1 _ 2 1X—2X-3 3
and (1 -3x) =1+ 3% + =-2(-3x) —( 3x)
=1+ 3x +9x? + 27x3 up to and including the term in x*
CoS2x
= =(1- (20)" E0) (1 + 3x + 922 + 27x)
1-3x
=14+ 3x +9x?+ 27x3 — 2x% — 6x3 up to and including the term in x*
cos 2x ) 3 ) ) )
= P =14+3x+7x°+ 21x up to and including the term in x*
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7 Polar Coordinates

The polar coordinates of P are (r, &)

P(r, 9)
r = OP, the distance from the origin or pole, ;
and @ is the angle made anti-clockwise with the o 0
initial line. pole initial line

In the Edexcel syllabus r is always taken as positive or 0,and 0< 8 <2«

(But in most books r can be negative, thus (—4, g) is the same point as (4, 37”) )

Polar and Cartesian coordinates

From the diagram Ary
Y P(xy)
and tan6 = 2 (use sketch to find ). r
X =rcos@ and y = rsin 6. 0 : >
X

Sketching curves

In practice, if you are asked to sketch a curve, it will probably be best to plot a few points. The
important values of @ are those for which r=0.

The sketches in these notes will show when r is negative by plotting a dotted line; these sections
should be ignored as far as Edexcel A-level is concerned.

Some common curves

r=a+bcos0O

Cardiod Limacon without dimple Limacon with a dimple

a=b a>2b, b<a<?2b

41y 41y 4y
/\r=3+30036 — /—\r=3+20039
r=3+1.4cos6
2 2 2
X X

2 4 -2 2 4 6 2 4 6

2 -2 -2
-4 -4 -4
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Limacon with a loop

a<b

r negative in the loop

r=2+3cos0

6
-4
Line (x =3)
41y
r=3secH
2
X
-4 -2 2 4
-2
-4

in the x-direction.

Circle

Line (y = 3)

41y
r=3cosecB
2
X
-4 -2 2 4
-2
-4

Half line

6=1/6

Circle

r=6c¢cos0

With Cartesian coordinates the graph of y =f (x —a) is the graph of y = f (x) translated through a

In a similar way the graph of r=3sec(f— ), or r =3 sec(a— ), is a rotation of the graph of

r = secd through «, anti-clockwise.

Line (x = 3 rotated through %)

r =3sec(6-T11/6)

A

x=3

initial line
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Line (y = 3 rotated through %)

r =3cosec(6-11/6)

initial line
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Rose Curves

r=4cos 36 r=4cos

30

0<O<~r L 0<2x

r=4cos30

below x-axis, r negative

above x-axis, r negative

r=4cos 36
0<8<2x

whole curve forr >0

The rose curve will always have n petals when n is odd, for0< 8 < 2x.

r=3cos46

When n is even there will be n petals for r > 0 and
0<6<2r.

Thus, whether n is odd or even, the rose curve
r=acoséd always has n petals, when only the
positive (or 0) values of r are taken.

Edexcel only allow positive or 0 values of r.

Leminiscate of Bernoulli Spiral r=26

2 Y r2=16c0s260

41y

r=3cos40

-
g

r=20
r>0

-40

28

Spiral r=¢?
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Circle r=10cos @

Notice that in the circle on OA as diameter, the angle P is
90° (angle in a semi-circle) and trigonometry gives us that
r=10cos 4.

Circle r=10sin @

In the same way r = 10 sin @ gives a circle on the y-axis.

Areas using polar coordinates

.1
Remember: area of a sector is 5r20

Area of OPQ = SA ~ §r250
—  Area OAB ~ z(grzae)

as 08 -0

y
5 P
0 A X
o 0
-5 r=10cos6
r=10sin®
P
X
-5 5

6, 1 0
=  Area OAB = fel ~r2do

FP2 OCT 2016 SDB
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Example: Find the area between the

curve r=1+tan @ y
and the half lines ® =0 and 6 ==

[
Solution: Area = [ /3 %rz do

/

/

= fn/3 1(1+tan8)? do /
- 0 2 1 // //

/7
- /3 1 2 /s
= J,® 3(1+2tan6 +tan®6) db fr

r=1+tan®

3

— /3 1 2 == .
= [ 1(2tan6 +sec?6) do & 2

— 1 1 7-[/3
= E [2In(sec#) + tan 0],

= In2 +§

Tangents parallel and perpendicular to the initial line

1)

2)

y=rsinf and x =rcosf

d
ay  _ y/dH
dx dx/de

Tangents will be parallel to the initial line (&= 0), or horizontal, when )

dx
dy
= Y 0
L (rsin@) = 0
= m (rsinf@) =
Tangents will be perpendicular to the initial line (8= 0), or vertical, when % is infinite
dx
= E =0
< 0) = 0
= m (rcos@) =

dx

Note that if both Z—Z =0 and = 0, then Z—z is not defined, and you should look at a sketch
to help (or use I'Hépital's rule).

30
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http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Example:
(a)
(b)

Solution:

(@)

=

U

=

=

Find the coordinates of the points on r = 1 + cos 8 where the tangents are

parallel to the initial line,
perpendicular to the initial line.

r =14 cos @ isshown in the diagram.

Tangents parallel to 8 =0 (horizontal)

Z—Z=O = ;—H(TSiHO) =0
:—9((1+c030)sin0)= 0 =
cosf —sin? 6 + cos?0 = 0 =
(2cos® —1)(cosf+1)= 0 =
6=i§ or @

Tangents perpendicularto € =0 (vertical)

Z—:=O = ;—e(rcose) =0
;—9((1+c059)c059)= 0 =
—sinf —2cosfsinfd =0 =
cos@ = —% or sinf =0

From the above we can see that

€)] the tangent is parallelto 8 =0

at B (Hzf),and E(0=—E),

3 3

also at 8 = m, the origin — see below (c)

(b) the tangent is perpendicularto € =0

—21

at A(0=0), C (6==") and D (9:7)

dy _

:—H(SinH +sinfcosf) = 0

2cos?@+cosf—1 =0

1
cos@=5 or —1

a 20y —
" (cos@ +cos*0) =0

sinf (1+2cosf) =0

r=1+cos®

x

(c) we also have both 3—; =0 and 5= 0 when 6 = m!ll

From the graph it looks as if the tangent is parallel to & =0 at the origin, when 6 = =,

and from I'Hopital's rule it can be shown that this is true.

FP2 OCT 2016 SDB
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Appendix

n'" roots of 1

Short method
Example: Find the 5" roots of — 4 + 4i = 42 " /a

Solution: First find the root with the
smallest argument Im

(4\/2637:1'/4)1/5 = V7o

b

Then sketch the symmetrical ‘spider
diagram where the angle between
successive roots is 27/ = 87/,

then find all five roots by
successively adding 87/, to the
argument of each root

to give
\/i e371'l'/20’ \/’2 ellni/ZO, \/E el977.'l'/20,

\/E eZ77Ti/20 - \/7 e—1371'i/20, and \/E e357Ti/20 _ \/Ee—STEi/ZO.

This can be generalized to find the n™ roots of any complex number, adding 27/, successively
to the argument of each root.

Warning: You must make sure that your method is very clear in an examination.
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Sum of n'" roots of 1

Consider the solutions of z %=1, the 5
complex 10" roots of 1. @°

Suppose that @ is the complex 10" root of 1 ®
with the smallest argument. The ‘spider’ 4
diagram shows that the roots are

o, 0 o ot ..., oand 1.

Symmetry indicates that the sum of all these
roots is a real number, but to prove that this 6
sum is O requires algebra.

= Q-1+ +0’°+0’+0*+... +0° =0 factorising

= l+ow+w’+o’+0*+... +0° =0, sincel—w # 0

o the sum of the complex 10" roots of 1 is 0.

This can be generalized to show that the sum of the n™ roots of 1 is 0, for any n.

FP2 OCT 2016 SDB

1—»



1* order differential equations

Justification of the Integrating Factor method.

34

d .
d—z +Py = Q where P and Q are functions of x only.

We are looking for an Integrating Factor, R (a function of x), so that multiplication by R
of the L.H.S. of the differential equation gives an exact derivative.

Multiplying the L.H.S. by R gives

R dy + RP
dx Y
If this is to be an exact derivative we can see, by looking at the first term, that we should

try

d dy dR dy
a(Ry)—Ra-Fya— Raﬁ'RPy
dR _ rp
= ydx - Y
[Lan=[ra
= R = X

= InR =dex

- R = elPax

Thus e/ P4 s the required I.F., Integrating Factor.
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Linear 2" order differential equations

Justification of the A.E. — C.F. technique for unequal roots

d*y dy
w'l‘ ba+ cy =0

2

without loss of generality we can take the coefficient of d—szl as 1.

Let the roots of the A.E. be «and S (a # ), then the A.E. can be written as
M-a)m-£H=0 & m’—(a+fm+af=0
So the differential equation can be written

4% Yy =0 I
d.xz (a ﬁ)dx aﬁy -

We can ‘sort of factorise’ this to give

(d )(dy )—o I "multiply’out to check
ool | v By) = multiply’out to chec

N t (dy >— in II d t dz =0
ow put | = By | =z, in II, andweget ———az=

1
= f;dz= fadx = z=Ae*

But (d—y—,@>=z = ﬂ—ﬁ =Ae™
dx y dx y

The Integrating Factor is e #*

d(e P*y) B
dx B

d
— e Bx @y ﬁe—ﬁxy = Ae%eBr —

A e (a_ﬁ)x
dx

A
= e_ﬁx = e(a_ﬁ)x + B
Y= =P

= y=Ae¥™ + Bef*

which is the C.F., for unequal roots of the A.E.
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Justification of the A.E. — C.F. technique for equal roots

d*y dy
W-l_ ba‘l‘ cy—O

2

without loss of generality we can take the coefficient of d_x}ZI as 1.

Let the roots of the A.E. be « and «, (equal roots) then the A.E. can be written as
M-a)(m-a)=0 < m*—2am+a?=0

So the differential equation can be written

We can ‘sort of factorise’ this to give

l ) ) g

1
= Edz= fadx = z=Ae*
d

y _ dy A ax
But (dx ay)—z = I ay=A4Ae

ax

The Integrating Factor is e ~

d d(e %
= e~ %— ae™ ¥y =Ae e " = % = A

= ey = Ax + B
= y = (Ax + B)e™

which is the C.F., for equal roots of the A.E.
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Justification of the A.E. — C.F. technique for complex roots

Suppose that « and g are complex roots of the A.E., then they must occur as a conjugate pair
(see FP1),

= a =a+iband g =a-ib

= CF. isy=Ae @*rix 4 g g @-ibix assuming that calculus works for complex nos. which it does
= y=e®XAe™ +Be ™) = e™(A(cosx +isinx) + B(cosx —isinx))

= CF. is y= e®(Ccosx + Dsinx), where C and D are arbitrary constants.

We now have the rules for finding the C.F. as before

— 4+ cy =0 where a, b and c are constants.

First write down the Auxiliary Equation, A.E
AE. am?+ bm+c¢=0
and solve to find the roots m = a or f8

e If a and B are both real numbers, and if a #
then the Complimentary Function, C.F., is
e y=Ae% + Beh* where A and B are arbitrary constants of integration

e If a and B are both real numbers, and if « = 8
then the Complimentary Function, C.F., is
o y=(A+Bx)e®, where A and B are arbitrary constants of integration

e If a and B are both complex numbers, and if « =a +ib, f =a—ib
then the Complimentary Function, C.F.,

o y=e%(Asinbx + B cos bx),
where A and B are arbitrary constants of integration
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Justification that G.S. = C.F. + P.l.

Consider the differential equation ay" + by' + cy =f (x)

Suppose that u (a function of x) is any member of the Complimentary Function,
and that v (a function of x) is a Particular Integral of the above D.E.

= au"+bu+cu=0
and av"+bv'+cv="F(x)
Let w=u+v

a(u+v)"+b(u+v) +c(u+v)

then aw" +bw' +cw

(au" +bu' +cu) + (av'+hbv'+cv) = 0+f(x)=f(X)
= w is a solution of ay" + by' + cy =f ()
= all possible solutions y = u + v are part of the General Solution. I

We now have to show that any member of the G.S. can be written in the form u + v, where u is
some member of the C.F., and v is the P.I. used above.

Let z be any member of the G.S, then az" + bz' +cz =f (x).
Consider z—v
a(z-v)'+b(z-v)+c(z-v)=(az"+bz'+cz) — (av"+bv'+cv) = fT(X)—F(x)=0
= (z - v) is some member of the C.F. —call it u
= Z-V=U = z=U+V

thus any member, z, of the G.S. can be written in the form u + v, where u is some member of the
C.F., and v is the P.I. used above. I

I and Il = the Complementary Function + a Particular Integral forms the complete General
Solution.
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Maclaurin’s Series

Proof of Maclaurin’s series

To express any function as a power series in X
Let f()=a+bx+ox®+dC+ex' +HC+ ... |
put x=0 = f(0)=a

— =  f'(xX) = b+2cx +3dx® + 4ex® + 5fix* + ...

put x=0 = f'0)=b

- = f"(X)=2x1c+3x2dx+ 4 x 3ex?+5x 4K + ...
put x=0 =  f"(0)=2x1c =  c=—f"(0)
- = f"(X)=3x2x1d+4x3x2eX+5x4x 30+

put x=0 =  f"(0)=8x2x1d = d=f"(0)
continuing in this way we see that the coefficient of x"in I is %f"(O)

= 1= FO+xXFO)+TfO0) +TFO0) + .+ FR(0) + ..

The range of x for which this series converges depends on f (x), and is beyond the scope

of this course.

Proof of Taylor’s series
If we put f(x) = g(x + a) then

f(0)=g(@), f'(0)=g'@, f"(0)=g"@), ..., f"(0)=g"@), ...
and Maclaurin’s series becomes

g(x+a)= g(@)+xg@+1g"@+1 g"(@) +... + = g'@)+ ...

which is Taylor’s series for g(x + a) as a power series in X

Replace x by (x —a) and we get

(x-a)"

g(x)= g(a)+(x—a)g'a)+ —(x—2¢!1)2 g"(a) + —(x_g!“)g gU@+ ...t g"@t ...

which is Taylor’s series for g(x) as a power series in (x —a)
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