FP2 Maclaurins Expansion

1. June 2010 qu.2

It is given that $f(x) = \tan^{-1}(1 + x)$.

(i) Find
$$f(0)$$
 and $f'(0)$, and show that $f''(0) = -\frac{1}{2}$. [4]

(ii) Hence find the Maclaurin series for f(x) up to and including the term in x^2 . [2]

2. June 2009 qu.3

(i) Given that
$$f(x) = e^{\sin x}$$
, find $f'(0)$ and $f''(0)$. [4]

(ii) Hence find the first three terms of the Maclaurin series for f(x). [2]

3. Jan 2009 qu. 1

- (i) Write down and simplify the first three terms of the Maclaurin series for e^{2x} . [2]
- (ii) Hence show that the Maclaurin series for $\ln(e^{2x} + e^{-2x})$ begins $\ln a + bx^2$, where a and b are constants to be found. [4]

4. June 2008 qu. 7

It is given that $f(x) = \tanh^{-1} \left(\frac{1-x}{2+x} \right)$, for $x > -\frac{1}{2}$.

(i) Show that
$$f'(x) = -\frac{1}{1+2x}$$
, and find $f''(x)$. [6]

(ii) Show that the first three terms of the Maclaurin series for f(x) can be written as $\ln a + bx + cx^2$, for constants a, b and c to be found. [4]

5. Jan 2008 qu. 1

It is given that $f(x) = \ln(1 + \cos x)$.

- (i) Find the exact values of f(0), f'(0) and f''(0). [4]
- (ii) Hence find the first two non-zero terms of the Maclaurin series for f(x). [2]

6. <u>June 2007 qu. 2</u>

(i) Given that
$$f(x) = \sin\left(2x + \frac{\pi}{4}\right)$$
, show that $f(x) = \frac{1}{2}\sqrt{2}\left(\sin 2x + \cos 2x\right)$ [2]

(ii) Hence find the first four terms of the Maclaurin series for f(x). [You may use appropriate results given in the List of Formulae.] [3]

7. <u>Jan 2007 qu. 1</u>

It is given that $f(x) = \ln(3 + x)$.

- (i) Find the exact values of (0) and f'(0), and show that $f''(0) = -\frac{1}{9}$. [3]
- (ii) Hence write down the first three terms of the Maclaurin series for f(x), given that $-3 < x \le 3$.

8. June 2006 qu.1

Find the first three non-zero terms of the Maclaurin series for $(1+x)\sin x$, simplifying the coefficients. [3]

9. <u>June 2006 qu.2</u>

- (i) Given that $y = \tan^{-1} x$, prove that $\frac{dy}{dx} = \frac{1}{1+x^2}$. [3]
- (ii) Verify that $y = \tan^{-1} x$ satisfies the equation $(1 + x^2) \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} = 0.$ [3]

10. Jan 2006 qu.1

- (i) Write down and simplify the first three non-zero terms of the Maclaurin series for ln(1+3x). [3]
- (ii) Hence find the first three non-zero terms of the Maclaurin series for $e^x \ln(1+3x)$, simplifying the coefficients. [3]

11. June 2010 qu.3

Given that the first three terms of the Maclaurin series for $(1 + \sin x)e^{2x}$ are identical to the first three terms of the binomial series for $(1 + ax)^n$, find the values of the constants a and n. (You may use appropriate results given in the List of Formulae (MF1).)

[6]