FP2 Summation of finite series

2 (a) Given that

$$\frac{1}{r(r+1)(r+2)} = \frac{A}{r(r+1)} + \frac{B}{(r+1)(r+2)}$$

show that $A = \frac{1}{2}$ and find the value of B.

(3 marks)

(b) Use the method of differences to find

$$\sum_{r=10}^{98} \frac{1}{r(r+1)(r+2)}$$

giving your answer as a rational number.

(4 marks)

2 (a) Given that

$$\frac{1}{4r^2-1} = \frac{A}{2r-1} + \frac{B}{2r+1}$$

find the values of A and B.

(2 marks)

(b) Use the method of differences to show that

$$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{n}{2n+1}$$
 (3 marks)

(c) Find the least value of
$$n$$
 for which $\sum_{r=1}^{n} \frac{1}{4r^2 - 1}$ differs from 0.5 by less than 0.001.

2 (a) Express
$$\frac{1}{r(r+2)}$$
 in partial fractions.

(3 marks)

(b) Use the method of differences to find

$$\sum_{r=1}^{48} \frac{1}{r(r+2)}$$

giving your answer as a rational number.

(5 marks)

6 (a) Show that
$$\frac{1}{(k+2)!} - \frac{k+1}{(k+3)!} = \frac{2}{(k+3)!}$$
. (2 marks)

(b) Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!} = 1 - \frac{2^{n+1}}{(n+2)!}$$
 (6 marks)

2 (a) Given that

$$u_r = \frac{1}{6}r(r+1)(4r+11)$$

show that

$$u_r - u_{r-1} = r(2r+3)$$
 (3 marks)

(b) Hence find the sum of the first hundred terms of the series

$$1 \times 5 + 2 \times 7 + 3 \times 9 + \dots + r(2r+3) + \dots$$
 (3 marks)

ESTION

7 (a) Given that

$$f(k) = 12^k + 2 \times 5^{k-1}$$

show that

$$f(k+1) - 5f(k) = a \times 12^k$$

where a is an integer.

(3 marks)

- (b) Prove by induction that $12^n + 2 \times 5^{n-1}$ is divisible by 7 for all integers $n \ge 1$.

 (4 marks)
- 3 (a) Show that

$$(r+1)! - (r-1)! = (r^2 + r - 1)(r-1)!$$
 (2 marks)

(b) Hence show that

$$\sum_{r=1}^{n} (r^2 + r - 1)(r - 1)! = (n + 2)n! - 2$$
 (4 marks)

6 (a) Show that

$$(k+1)(4(k+1)^2 - 1) = 4k^3 + 12k^2 + 11k + 3$$
 (2 marks)

(b) Prove by induction that, for all integers $n \ge 1$,

$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(4n^2 - 1)$$
 (6 marks)

4 The sequence $u_1, u_2, u_3, ...$ is defined by

$$u_1 = \frac{3}{4} \qquad u_{n+1} = \frac{3}{4 - u_n}$$

Prove by induction that, for all $n \ge 1$,

$$u_n = \frac{3^{n+1} - 3}{3^{n+1} - 1} \tag{6 marks}$$

3 (a) Show that

$$\frac{2^{r+1}}{r+2} - \frac{2^r}{r+1} = \frac{r2^r}{(r+1)(r+2)}$$
 (3 marks)

(b) Hence find

$$\sum_{r=1}^{30} \frac{r2^r}{(r+1)(r+2)}$$

giving your answer in the form $2^n - 1$, where n is an integer.

(3 marks)

7 (a) Prove by induction that, for all integers $n \ge 1$,

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \dots + \frac{2n+1}{n^2(n+1)^2} = 1 - \frac{1}{(n+1)^2}$$
 (7 marks)

(b) Find the smallest integer n for which the sum of the series differs from 1 by less than 10⁻⁵. (2 marks)

Show that
$$\frac{1}{5r-2} - \frac{1}{5r+3} = \frac{A}{(5r-2)(5r+3)}$$
, stating the value of the constant A.

(b) Hence use the method of differences to show that

$$\sum_{r=1}^{n} \frac{1}{(5r-2)(5r+3)} = \frac{n}{3(5n+3)}$$
 (4 marks)

(c) Find the value of

$$\sum_{r=1}^{\infty} \frac{1}{(5r-2)(5r+3)}$$
 (1 mark,

7 The polynomial p(n) is given by $p(n) = (n-1)^3 + n^3 + (n+1)^3$.

- (a) (i) Show that p(k+1) p(k), where k is a positive integer, is a multiple of 9.
 - (ii) Prove by induction that p(n) is a multiple of 9 for all integers $n \ge 1$. (4 marks)
- (b) Using the result from part (a)(ii), show that $n(n^2 + 2)$ is a multiple of 3 for any positive integer n. (2 marks)

3 The sequence u_1, u_2, u_3, \dots is defined by

$$u_1 = 2$$
, $u_{n+1} = \frac{5u_n - 3}{3u_n - 1}$

Prove by induction that, for all integers $n \ge 1$,

$$u_n = \frac{3n+1}{3n-1} \tag{6 marks}$$

4 (a) Given that $f(r) = r^2(2r^2 - 1)$, show that

$$f(r) - f(r-1) = (2r-1)^3$$
 (3 marks)

(b) Use the method of differences to show that

$$\sum_{r=n+1}^{2n} (2r-1)^3 = 3n^2(10n^2-1)$$
 (4 marks)

3 (a) Express $(k+1)^2 + 5(k+1) + 8$ in the form $k^2 + ak + b$, where a and b are constants.

[1 mark]

(b) Prove by induction that, for all integers $n \ge 1$,

$$\sum_{r=1}^{n} r(r+1) \left(\frac{1}{2}\right)^{r-1} = 16 - \left(n^2 + 5n + 8\right) \left(\frac{1}{2}\right)^{n-1}$$

[6 marks]

1 (a) Express $\frac{1}{(r+2)r!}$ in the form $\frac{A}{(r+1)!} + \frac{B}{(r+2)!}$, where A and B are integers.

[3 marks]

(b) Hence find $\sum_{r=1}^{n} \frac{1}{(r+2)r!}$.

[2 marks]

- 4 The expression f(n) is given by $f(n) = 2^{4n+3} + 3^{3n+1}$.
 - (a) Show that f(k+1) 16f(k) can be expressed in the form $A \times 3^{3k}$, where A is an integer.

[3 marks]

(b) Prove by induction that f(n) is a multiple of 11 for all integers $n \ge 1$.

[4 marks]

1 (a) Given that $f(r) = \frac{1}{4r-1}$, show that

$$f(r) - f(r+1) = \frac{A}{(4r-1)(4r+3)}$$

where A is an integer.

[2 marks]

(b) Use the method of differences to find the value of $\sum_{r=1}^{50} \frac{1}{(4r-1)(4r+3)}$, giving your answer as a fraction in its simplest form.

[4 marks]

7 Given that $p\geqslant -1$, prove by induction that, for all integers $n\geqslant 1$,

$$(1+p)^n \geqslant 1 + np$$

[6 marks]

2(a)	1 = A(r+2) + Br	M1		
	$2A = 1$, $A = \frac{1}{2}$	A1		
	$A + B = 0$, $B = -\frac{1}{2}$	A1	3	
(b)	$r = 10 \qquad \frac{1}{2} \left(\frac{1}{10.11} - \frac{1}{11.12} \right)$ $r = 11 \qquad \frac{1}{2} \left(\frac{1}{11.12} - \frac{1}{12.13} \right)$			if (a) is incorrect but $A = \frac{1}{2}$ and $B = -\frac{1}{2}$ used, allow full marks for (b)
	$r = 98$ $\frac{1}{2} \left(\frac{1}{98.99} - \frac{1}{99.100} \right)$	M1A1		3 relevant rows seen
	$S = \frac{1}{2} \left(\frac{1}{10.11} - \frac{1}{99.100} \right)$	m1		if split into $\frac{1}{2r} - \frac{1}{r+1} + \frac{1}{2(r+2)}$, follow
				mark scheme, in which case $\frac{1}{2.10} - \frac{1}{2.11} + \frac{1}{2.100} - \frac{1}{2.99} \text{ scores m1}$
	$=\frac{89}{19800}$	A1	4	
	=	A1	7	

2(a)	$A = \frac{1}{2}, B = -\frac{1}{2}$	B1, B1F	2	For either A or B For the other
(b)	Method of differences clearly shown	M1		
	$Sum = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$	A1		
	$=\frac{n}{2n+1}$	A1	3	AG
(c)	$\frac{1}{2(2n+1)} < 0.001 \text{ or } \frac{n}{2n+1} > 0.499$	М1		Condone use of equals sign
	1 < 0.004n + 0.002 or $n > 0.998n + 0.499$			
	$n > \frac{0.998}{0.004}$ or $0.004n > 0.998$	A1		OE
	n = 250	A1F	3	ft if say 0.4999 used If method of trial and improvement used, award full marks for a completely correct solution showing working
	Total		8	

				1
2(a)	$\frac{1}{r(r+2)} = \frac{A}{r} + \frac{B}{r+2}$ $A = \frac{1}{2}, B = -\frac{1}{2}$	MI Al, AlF	3	ft incorrect A
(b)	$r = 1 \frac{1}{1.3} = \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} \right)$	AIF		
	$r = 2 \frac{1}{2.4} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{4} \right)$			
	$r = 3$ $\frac{1}{3.5} = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right)$	M1		3 rows (PI) numerical values only
	$r = 48 \frac{1}{48.50} = \frac{1}{2} \left(\frac{1}{48} - \frac{1}{50} \right)$	AlF		Last row - could be implied
	Cancelling appropriate pairs	M1		
	$Sum = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} - \frac{1}{49} - \frac{1}{50} \right)$	AlF		Allow if the $\frac{1}{2}$ is missing only
	$=\frac{894}{1225}$	Al	5	CAO (or equivalent fraction)
	Total		8	

6(a)	1 1+3				
,,,	$\frac{1}{(k+2)!} = \frac{k+3}{(k+3)!}$	MI			
	Result	Al	2		
(b)	Assume true for $n = k$				
/my	For $n = k + 1$				
	$\sum_{r=1}^{k+1} \frac{r \times 2^r}{(r+2)!} = 1 - \frac{2^{k+1}}{(k+2)!} + \frac{(k+1)2^{k+1}}{(k+3)!}$	MIAI		If	f no LHS of equation, M1A0
	$=1-2^{k+1}\left(\frac{1}{(k+2)!}-\frac{k+1}{(k+3)!}\right)$	ml			n1 for a suitable combination clearly hown
	$=1-\frac{2^{k+2}}{(k+3)!}$	Al		cl	learly shown or stated true for $n = k + 1$
	True for $n=1$	BI		100	Shown
	Method of induction set out properly Total	El	8	P	Provided previous 5 marks all earned
		-	-	1	
2(a)	OF 200				
	$\frac{1}{6}r(r+1)(4r+11) - \frac{1}{6}(r-1)r(4r+7)$	M1			
	Correct expansion in any form, eg				
	$\frac{1}{6}r(4r^2+15r+11-4r^2-3r+7)$	Al	411		
	$ \begin{array}{l} 6 \\ = r(2r+3) \end{array} $	Al	3		AG
(b)		M1 A1			
	$S_{100} = u_{100} - u_0$ = 691850	Al	3		CAO
	0,1000				
	Total		6		
7(9)	Total				
7(a)	f(k+1)-5f(k)				
7(a)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times 5^{k}-5(12^{k}+2\times 5^{k-1})$	MI			
7(a)	$f(k+1) - 5f(k)$ $= 12^{k+1} + 2 \times 5^{k} - 5(12^{k} + 2 \times 5^{k-1})$ $= 12^{k+1} + 2 \times 5^{k} - 5 \times 12^{k} - 2 \times 5^{k}$	M1 AI	6	for	expansion of bracket $5 \times 5^{k-1} = 5^k$ used
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times 5^{k}-5(12^{k}+2\times 5^{k-1})$	MI		for	
7(a) (b)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$	M1 AI	6	for	expansion of bracket $5 \times 5^{k-1} = 5^k$ used
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$	M1 AI	6	for	expansion of bracket $5 \times 5^{k-1} = 5^k$ used
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$	M1 AI AI	6	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$	MI AI AI	6	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$	MI AI AI MI AI	6	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown vard only if all 3 previous marks
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$	MI AI AI MI AI BI	3	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown
(b)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times 5^{k}-5(12^{k}+2\times 5^{k-1})$ $=12^{k+1}+2\times 5^{k}-5\times 12^{k}-2\times 5^{k}$ $=12\times 12^{k}-5\times 12^{k}=7\times 12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$ Correct inductive process	M1 A1 A1 A1 B1 E1	3	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown vard only if all 3 previous marks
	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$ Correct inductive process Total $(r+1)!=(r+1)r(r-1)!$	MI AI AI BI EI	3 4 7	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown vard only if all 3 previous marks ned)
(b) 3(a)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$ Correct inductive process Total $(r+1)!=(r+1)r(r-1)!$ Result	MI AI AI BI EI	3 4 7 M1 A1	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown vard only if all 3 previous marks
(b)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$ Correct inductive process Total $(r+1)!=(r+1)r(r-1)!$ Result Attempt to use method of differences	MI AI AI BI EI	3 4 7	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown vard only if all 3 previous marks ned)
(b) 3(a)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times 5^{k}-5(12^{k}+2\times 5^{k-1})$ $=12^{k+1}+2\times 5^{k}-5\times 12^{k}-2\times 5^{k}$ $=12\times 12^{k}-5\times 12^{k}=7\times 12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$ Correct inductive process Total $(r+1)!=(r+1)r(r-1)!$ Result Attempt to use method of differences $\sum_{r=1}^{n}(r^{2}+r-1)(r-1)!=(n+1)!+n!-1!-0!$	MI AI AI BI EI	3 4 7 M1 A1	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown It merely a repetition of part (a) arly shown For each of the previous marks are also arrows and only if all 3 previous marks are also arrows are
(b) 3(a)	Total $f(k+1)-5f(k)$ $=12^{k+1}+2\times5^{k}-5(12^{k}+2\times5^{k-1})$ $=12^{k+1}+2\times5^{k}-5\times12^{k}-2\times5^{k}$ $=12\times12^{k}-5\times12^{k}=7\times12^{k}$ Assume $f(k)=M(7)$ Then $f(k+1)=5f(k)+M(7)$ $=M(7)$ $f(1)=12+2=14=M(7)$ Correct inductive process Total $(r+1)!=(r+1)r(r-1)!$ Result Attempt to use method of differences	MI AI AI BI EI	3 4 7	for clea	expansion of bracket $5 \times 5^{k-1} = 5^k$ used arly shown t merely a repetition of part (a) arly shown vard only if all 3 previous marks ned)

	F	1920		4-1-04-1-0-1-0-1
6(a)	Expansion of $(k+1)(4(k+1)^2-1)$	MI		Any valid method – first step correct
	$=4k^3+12k^2+11k+3$	AI	2	AG
(b)	Assume true for $n=k$ For $n=k+1$:			
	$\sum_{r=1}^{k+1} (2r-1)^2 = \frac{1}{3}k(4k^2-1) + (2k+1)^2$	MIAI		No LHS M1A0
	$= \frac{1}{3} \left(4k^3 + 12k^2 + 11k + 3 \right)$	AlF		ft error in $(2k+1)$
	$= \frac{1}{3}(k+1)(4(k+1)^2 - 1)$	Al		Using part (a)
	True for <i>n</i> = 1 shown Proof by induction set out properly (if factorised by 3 linear factors, allow A1 at this particular point)	B1 E1	6	Dependent on all marks correct
	Total	-	8	
4	Assume result true for $n = k$ Then $u_{k+1} = \frac{3}{4 - \left(\frac{3^{k+1} - 3}{3^{k+1} - 1}\right)}$	M1		
	$=\frac{3(3^{k+1}-1)}{4(3^{k+1}-1)-(3^{k+1}-3)}$	AI		
	$4 \times 3^{k+1} - 3^{k+1} = 3^{k+2}$	AI		clearly shown
	$4 \times 3^{k+1} - 3^{k+1} = 3^{k+2}$ $u_{k+1} = \frac{3^{k+2} - 3}{3^{k+2} - 1}$	AI		
	$n=1 \frac{3^2-3}{3^2-1} = \frac{3}{4} = u_1$ Induction proof set out properly	BI EI	6	must have earned previous 5 marks
	Total		6	must have earned previous 5 marks
3(a)	Attempt to put LHS over common	MI		
	denominator $\frac{2^{r+1}(r+1) - 2^r(r+2)}{(r+1)(r+2)}$	Al		any form
	$=\frac{r(2^{r+1}-2^r)}{(r+1)(r+2)}$	Į, i		2.5
	$= \frac{r2^r}{(r+1)(r+2)} \text{ must see } r2^{r+1} = 2r2^r$	Al	3	clearly shown as AG
(b)	$\frac{2^2}{3} - \frac{2}{2}$ $\frac{2^3}{4} - \frac{2^2}{3}$			
	$\frac{2^{31}}{32} - \frac{2^{30}}{31}$ $S_{30} = \frac{2^{31}}{32} - 1 \text{ or } S_n = \frac{2^{n+1}}{n+2} - 1$	MI Al		3 rows indicated (PI)
	72 11.2		-	210
	$=2^{26}-1$	Al	3	CAO

7(a) Assume true for $n = k$			
7(a) Assume true for $n = k$			
Then $\sum_{r=1}^{k+1} \frac{2r+1}{r^2(r+1)^2}$			
$r=1 r^2 (r+1)^2$			
1 $2k+3$	1 000 0		section of the sectio
$=1-\frac{1}{(k+1)^2}+\frac{2k+3}{(k+1)^2(k+1)^2}$	-2) ² MIAI		M1A0 if no LHS
			AND THE PARTY OF T
$=1-\frac{1}{(k+1)^2}\left(1-\frac{2k+3}{(k+2)^2}\right)$	ml		attempt to factorise or put over a
$(k+1)^2$ $(k+2)^2$			common denominator
$=1-\frac{1}{(k+1)^2}\left(\frac{k^2+2k+1}{(k+2)^2}\right)$	9.0		
$=1-\frac{(k+1)^2}{(k+2)^2}$	Al		any correct combination starting I-
1			
$=1-\frac{1}{(k+2)^2}$	Al		
	200		
True for $n=1$ LHS = RH	$S = \frac{3}{2}$ B1		
	4		and the second second second
Method of induction set or	at properly E1	7	must score all 6 previous marks for this
			mark
as i			
(b) $(n+1)^2 > 10^5$ or $\frac{1}{n+1} > 10^5$	-10 ⁻⁵ M1		Condone equals
(b) $(n+1)^2 > 10^5 \text{ or } \frac{1}{(n+1)^2} > n+1 > 316.2$			
n+1>316.2			
n > 315.2			
n = 316	Al	2	
	Total	9	

3(a)	$\frac{1}{5r-2} - \frac{1}{5r+3} = \frac{5r+3-(5r-2)}{(5r-2)(5r+3)}$	MI		condone omission of brackets for M1
	$= \frac{5}{(5r-2)(5r+3)}$	Alcso	2	A = 5
(b)	Attempt to use method of differences	MI		at least 2 terms of correct form seen
	$k\left\{\frac{1}{3} - \frac{1}{5n+3}\right\}$	AI		correct cancellation leaving correct two fractions
	$k\left\{\frac{(5n+3)-3}{3(5n+3)}\right\}$	m1		attempt to write with common denominator
	$S_n = \frac{1}{5} \left\{ \frac{(5n+3)-3}{3(5n+3)} \right\} = \frac{n}{3(5n+3)}$	Alcso	4	AG $k = \frac{1}{5}$ used correctly throughout
(c)	$S_{\infty} = \frac{1}{15}$	BI	1	
	Total		7	

7(a)(i)	$p(k+1) - p(k) = k^3 + (k+1)^3 + (k+2)^3$ $-(k-1)^3 - k^3 - (k+1)^3$	MI		
	$=(k+2)^3-(k-1)^3$			5 10 00 0
	$= k^3 + 6k^2 + 12k + 8 - (k^2 - 3k^2 + 3k - 1)$	Al		multiplied out & correct unsimplified
	$=9k^2 + 9k + 9 = 9(k^2 + k + 1)$ which is a multiple of 9 (since $k^2 + k + 1$ is an integer)	Alcso	3	correct algebra plus statement
(ii)	$p(1) = 1 + 8 = 9$ $\Rightarrow p(1) \text{ is a multiple of } 9$	B1		result true for $n = 1$
	$p(k+1) = p(k) + 9(k^2 + k + 1)$ or $p(k+1) = p(k) + 9N$	MI		$p(k+1) = \dots$ and result from part (i) considered and mention of divisible by
	Assume $p(k)$ is a multiple of 9 so $p(k) = 9M$, where M is integer $\Rightarrow p(k+1) = 9M + 9N = 9(M+N)$			must have word such as "assume" for A
	$\Rightarrow p(k+1) \text{ is a multiple of 9}$	Al		convincingly shown
	Result true for $n = 1$ therefore true for $n = 2$, $n = 3$ etc by induction. (or $p(n)$ is a multiple of 9 for all integers $n \ge 1$)	El	4	must earn previous 3 marks before E1 is scored
(b)	$p(n) = (n-1)^3 + n^3 + (n+1)^3$ = $3n^3 + 6n$	BI		need to see this OE as evidence or $3n(n^2 + 2)$
	$p(n) = 3n(n^2 + 2)$ & p(n) is a multiple of 9. Therefore $n(n^2 + 2)$ is a multiple of 3			both of these required
	(for any positive integer n .)	El	2	plus concluding statement

~	Someon	***************************************		Commons
3	$n = 1$, $\frac{3+1}{3-1} = \frac{4}{2} = 2$ ($u_1 = 2$ so formula is) true when $n = 1$	В1		be convinced they have used $u_n = \frac{3n+1}{3n-1}$
	Assume formula is true for $n = k$ (*) $(u_{k+1} =) \frac{5\frac{3k+1}{3k-1} - 3}{3\frac{3k+1}{3k-1} - 1}$	MI		clear attempt at RHS of this formula
		mI		clear attempt to remove "double fraction"
	$(u_{k+1} =) \frac{5(3k+1) - 3(3k-1)}{3(3k+1) - (3k-1)}$	Al		$\frac{6k+8}{6k+4}$
	$u_{k+1} = \frac{3k+4}{3k+2}$ or $u_{k+1} = \frac{3(k+1)+1}{3(k+1)-1}$ Hence formula is true for $n = k+1$ (**)	Alcso		must have " u_{k+1} = " on at least this line
	must have lines (*) & (**) and "Result true for $n = 1$ therefore true for $n = 2$, $n = 3$ etc by induction."	E1	6	must also have earned previous 5 marks before E1 is scored
	Total		6	

	Total		7	
	$= 30n - 3n$ $= 3n^2(10n^2 - 1)$	Alcso	4	AG be convinced
	$f(2n) - f(n) = 4n^{2}(8n^{2} - 1) - n^{2}(2n^{2} - 1)$ $= 30n^{4} - 3n^{2}$	Al		
(b)	Attempt to use method of differences $f(2n) - f(n)$	MI ml		$(2n)^2 \{2(2n^2) - 1\} - n^2(2n^2 - 1)$
	$= (2r-1)^3$	Alcso	3	AG
	$= 2r^4 - r^2 - (2r^4 - 8r^3 + 11r^2 - 6r + 1)$ $= 8r^3 - 12r^2 + 6r - 1$	AI		f(r) & $f(r-1)$ expanded correctly condone correct unsimplified
4(a)	$f(r) - f(r-1) = $ $r^{2}(2r^{2} - 1) - (r-1)^{2}(2(r-1)^{2} - 1) $ $= 2r^{4} - r^{2} - (r^{2} - 2r + 1)(2r^{2} - 4r + 1) $	MI		condone one slip here attempt to multiply out "their" $f(r-1)$

3 (a)	$k^2 + 7k + 14$	B1	1	
(b)	When $n = 1$ LHS = $1 \times 2 \times 1 = 2$ RHS = $16 - 14 = 2$ Therefore true for $n = 1$	B1		
	Assume formula is true for $n=k$ (*) Add $(k+1)$ th term (to both sides) $\sum_{r=1}^{k+1} r(r+1) \left(\frac{1}{2}\right)^{r-1}$	M1		(k+1)th term must be correct
	$= 16 - (k^{2} + 5k + 8)(\frac{1}{2})^{k-1} + (k+1)(k+2)(\frac{1}{2})^{k}$	A1		A0 if only considering RHS
	$=16 - \left(\frac{1}{2}\right)^{k} \left(2k^{2} + 10k + 16 - k^{2} - 3k - 2\right)$ $=16 - \left(\frac{1}{2}\right)^{k} \left(k^{2} + 7k + 14\right)$	A1		
	$=16-((k+1)^2+5(k+1)+8)(\frac{1}{2})^k$	A1		from part (a)
	Hence formula is true when $n = k+1$ (**) but true for $n = 1$ so true for $n = 2, 3,$ by induction (***)	E1	6	must have (*), (**) and (***) and must have earned previous 5 marks
	Total		7	

Q1	Solution	Mark	Total	Comment
(a)	$r+1 = A(r+2) + B$ or $1 = \frac{A(r+2)}{r+1} + \frac{B}{r+1}$	MI		OE with factorials removed
	either $A=1$ or $B=-1$	AI		correctly obtained
	$\frac{1}{(r+2)r!} = \frac{1}{(r+1)!} - \frac{1}{(r+2)!}$	A1	3	allow if seen in part (b)
(b)	$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{3!} - \frac{1}{4!} + \dots$ $\frac{1}{(n+1)!} - \frac{1}{(n+2)!}$	M1		use of their result from part (a) at least twice
	Sum = $\frac{1}{2} - \frac{1}{(n+2)!}$	A1	2	must simplify 2! and must have scored at least M1 A1 in part (a)
	Total		5	

Q4	Solution	Mark	Total	Comment
(a)	$f(k+1) = 2^{4k+7} + 3^{3k+4}$	М1		
	convincingly showing $2^{4k+7} = 16 \times 2^{4k+3}$ f $(k+1)-16$ f (k)	E1		must see $16 = 2^4$ OE
	$=(81-16\times3)\times3^{3k}$			
	$= 33 \times 3^{3k}$	A1	3	
(b)	f(1) = 209 therefore $f(1)$ is a multiple of 11	В1		$f(1) = 209 = 11 \times 19 \text{ or } 209 \div 11 = 19 \text{ etc}$ therefore true when $n=1$
	Assume f(k) is a multiple of 11 (*)			
	$f(k+1) = 16f(k) + 33 \times 3^{3k}$	M1		attempt at $f(k+1) =$ using their result
	=11M+11N=11(M+N)	5.4		from part (a) where M and N are integers
	Therefore $f(k+1)$ is a multiple of 11	A1		nant salated a set mileto
	Since $f(1)$ is multiple of 11 then $f(2)$, $f(3)$, are multiples of 11 by induction (or is a multiple of 11 for all integers $n \ge 1$)	E1	4	must earn previous 3 marks and have (* before E1 can be awarded
	Total		7	

Mark Total Comment Solution M1 $= \frac{4}{(4r-1)(4r+3)}$ 2 A1 (b) $\frac{1}{3} - \frac{1}{7} + \frac{1}{7} - \frac{1}{11} + \dots \text{ OE}$ or $f(1) - f(2) + f(2) - f(3) + \dots$ Clear attempt to use method of differences possibly with one error M1 PI by first A1 $\sum_{r=1}^{50} [f(r) - f(r+1)] = f(1) - f(51)$ $= \frac{1}{3} - \frac{1}{203}$ $\sum_{r=1}^{50} \frac{1}{(4r-1)(4r+3)} = \frac{1}{4} \left(\frac{1}{3} - \frac{1}{203}\right)$ A1 "their" $\frac{1}{4}$ × "their" $\left(\frac{1}{3} - \frac{1}{203}\right)$ m1 A1 Total 6

Q7	Solution	Mark	Total	Comment
	n=1: LHS =1+ p ; RHS =1+ $pTherefore result is true when n=1$	В1		
	Assume inequality is true for $n = k$ (*) Multiply both sides by $1+p$ $(1+p)^{k+1}(1+kp)(1+p)$ Inequality only valid since multiplication by positive number because $1+p0$	El		and stating $1+p \dots 0$ before multiplying both sides by $1+p$ or justifying why inequality remains \dots
	Considering $(1+kp)(1+p)$	M1		and attempt to multiply out
	$RHS = 1 + kp + p + kp^2$	A1		
	RHS1+ $kp + p$ $\Rightarrow (1+p)^{k+1}1 + (k+1)p$	A1		must have correct algebra and inequalities throughout
	Hence inequality is true when $n = k+1$ (**) but true for $n = 1$ so true for $n = 2, 3,$ by induction (***) (or true for all integers $n 1$ (***))	E1	6	must have (*), (**) and (***) and must have earned previous B1, M1, A1, A1 marks
	Total		6	