FP2 Roots of Polymonial Equations

2 The cubic equation

$$x^3 + px^2 + qx + r = 0$$

where p, q and r are real, has roots α , β and γ .

(a) Given that

$$\alpha + \beta + \gamma = 4$$
 and $\alpha^2 + \beta^2 + \gamma^2 = 20$

find the values of p and q.

(5 marks)

(b) Given further that one root is 3 + i, find the value of r.

(5 marks)

5 The cubic equation

$$z^3 - 4iz^2 + qz - (4 - 2i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1 mark)

(ii)
$$\alpha\beta\gamma$$
. (1 mark)

(b) Given that $\alpha = \beta + \gamma$, show that:

(i)
$$\alpha = 2i$$
; (1 mark)

(ii)
$$\beta \gamma = -(1+2i)$$
; (2 marks)

(iii)
$$q = -(5+2i)$$
. (3 marks)

(c) Show that β and γ are the roots of the equation

$$z^2 - 2iz - (1 + 2i) = 0 (2 marks)$$

(d) Given that β is real, find β and γ . (3 marks)

-	F273		
3	The	cubic	equation

$$z^3 + 2(1 - i)z^2 + 32(1 + i) = 0$$

has roots α , β and γ .

- (a) It is given that α is of the form ki, where k is real. By substituting z = ki into the equation, show that k = 4.
- (b) Given that $\beta = -4$, find the value of γ . (2 marks)

2 The cubic equation

$$z^3 + pz^2 + 6z + q = 0$$

has roots α , β and γ .

- (a) Write down the value of $\alpha\beta + \beta\gamma + \gamma\alpha$. (1 mark)
- (b) Given that p and q are real and that $\alpha^2 + \beta^2 + \gamma^2 = -12$:
 - (i) explain why the cubic equation has two non-real roots and one real root;

(2 marks)

- (ii) find the value of p. (4 marks)
- (c) One root of the cubic equation is −1 + 3i.

Find:

- (i) the other two roots; (3 marks)
- (ii) the value of q. (2 marks)

$$z^3 + iz^2 + 3z - (1+i) = 0$$

has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1 mark)

(ii)
$$\alpha \beta + \beta \gamma + \gamma \alpha$$
; (1 mark)

(iii)
$$\alpha\beta\gamma$$
. (1 mark)

(b) Find the value of:

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
; (3 marks)

(ii)
$$\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$$
; (4 marks)

(iii)
$$\alpha^2 \beta^2 \gamma^2$$
. (2 marks)

(c) Hence write down a cubic equation whose roots are α^2 , β^2 and γ^2 . (2 marks)

3 The cubic equation

$$z^3 + qz + (18 - 12i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha\beta\gamma$$
; (1 mark)

(ii)
$$\alpha + \beta + \gamma$$
. (1 mark)

(b) Given that $\beta + \gamma = 2$, find the value of:

(i)
$$\alpha$$
; (1 mark)

(ii)
$$\beta \gamma$$
; (2 marks)

(iii)
$$q$$
. (3 marks)

(c) Given that β is of the form ki, where k is real, find β and γ . (4 marks)

4 It is given that α , β and γ satisfy the equations

$$\alpha + \beta + \gamma = 1$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -5$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -23$$

- (a) Show that $\alpha \beta + \beta \gamma + \gamma \alpha = 3$. (3 marks)
- (b) Use the identity

$$(\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) = \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$$
 to find the value of $\alpha\beta\gamma$. (2 marks)

- (c) Write down a cubic equation, with integer coefficients, whose roots are α , β and γ .

 (2 marks)
- (d) Explain why this cubic equation has two non-real roots. (2 marks)
- (e) Given that α is real, find the values of α , β and γ . (4 marks)
- 3 The cubic equation

$$z^3 + pz^2 + 25z + q = 0$$

where p and q are real, has a root $\alpha = 2 - 3i$.

- (a) Write down another non-real root, β , of this equation. (1 mark)
- (b) Find:
 - (i) the value of $\alpha\beta$; (1 mark)
 - (ii) the third root, γ , of the equation; (3 marks)
 - (iii) the values of p and q. (3 marks)

$$2z^3 + pz^2 + qz + 16 = 0$$

where p and q are real, has roots α , β and γ .

It is given that $\alpha = 2 + 2\sqrt{3}i$.

(a) (i) Write down another root, β , of the equation. (1 mark)

(ii) Find the third root, γ. (3 marks)

(iii) Find the values of p and q. (3 marks)

(b) (i) Express α in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. (2 marks)

(ii) Show that

$$(2 + 2\sqrt{3}i)^n = 4^n \left(\cos\frac{n\pi}{3} + i\sin\frac{n\pi}{3}\right)$$
 (2 marks)

(iii) Show that

$$\alpha^{n} + \beta^{n} + \gamma^{n} = 2^{2n+1} \cos \frac{n\pi}{3} + \left(-\frac{1}{2}\right)^{n}$$

where n is an integer. (3 marks)

4 The roots of the cubic equation

$$z^3 - 2z^2 + pz + 10 = 0$$

are α , β and γ .

It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$.

(a) Write down the value of
$$\alpha + \beta + \gamma$$
. (1 mark)

(b) (i) Explain why
$$\alpha^3 - 2\alpha^2 + p\alpha + 10 = 0$$
. (1 mark)

(ii) Hence show that

$$\alpha^2 + \beta^2 + \gamma^2 = p + 13 \tag{4 marks}$$

(iii) Deduce that
$$p = -3$$
. (2 marks)

(c) (i) Find the real root
$$\alpha$$
 of the cubic equation $z^3 - 2z^2 - 3z + 10 = 0$. (2 marks)

(ii) Find the values of
$$\beta$$
 and γ . (3 marks)

3 (a) Show that
$$(1+i)^3 = 2i - 2$$
. (2 marks)

(b) The cubic equation

$$z^3 - (5+i)z^2 + (9+4i)z + k(1+i) = 0$$

where k is a real constant, has roots α , β and γ .

It is given that $\alpha = 1 + i$.

(ii) Show that
$$\beta + \gamma = 4$$
. (1 mark)

(iii) Find the values of β and γ . (5 marks)

$$z^3 - 2z^2 + k = 0 \qquad (k \neq 0)$$

has roots α , β and γ .

(a) (i) Write down the values of
$$\alpha + \beta + \gamma$$
 and $\alpha\beta + \beta\gamma + \gamma\alpha$. (2 marks)

(ii) Show that
$$\alpha^2 + \beta^2 + \gamma^2 = 4$$
. (2 marks)

(iii) Explain why
$$\alpha^3 - 2\alpha^2 + k = 0$$
. (1 mark)

(iv) Show that
$$\alpha^3 + \beta^3 + \gamma^3 = 8 - 3k$$
. (2 marks)

(b) Given that $\alpha^4 + \beta^4 + \gamma^4 = 0$:

(i) show that
$$k=2$$
; (4 marks)

(ii) find the value of
$$\alpha^5 + \beta^5 + \gamma^5$$
. (3 marks)

7 The numbers α , β and γ satisfy the equations

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -10 - 12i$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 5 + 6i$$

(a) Show that
$$\alpha + \beta + \gamma = 0$$
. (2 marks)

(b) The numbers α , β and γ are also the roots of the equation

$$z^3 + pz^2 + qz + r = 0$$

Write down the value of p and the value of q. (2 marks)

(c) It is also given that $\alpha = 3i$.

(i) Find the value of
$$r$$
. (3 marks)

(ii) Show that β and γ are the roots of the equation

$$z^2 + 3iz - 4 + 6i = 0 (2 marks)$$

(iii) Given that β is real, find the values of β and γ . (3 marks)

$$z^3 + pz + q = 0$$

has roots α , β and γ .

(a) (i) Write down the value of $\alpha + \beta + \gamma$. (1 mark)

(ii) Express $\alpha\beta\gamma$ in terms of q. (1 mark)

(b) Show that

$$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma \tag{3 marks}$$

(c) Given that $\alpha = 4 + 7i$ and that p and q are real, find the values of:

(i) β and γ ; (2 marks)

(ii) p and q. (3 marks)

(d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

4 The roots of the equation

$$z^3 - 5z^2 + kz - 4 = 0$$

are α , β and γ .

- (a) (i) Write down the value of $\alpha + \beta + \gamma$ and the value of $\alpha \beta \gamma$. (2 marks)
 - (ii) Hence find the value of $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$. (2 marks)
- **(b)** The value of $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ is -4.
 - (i) Explain why α , β and γ cannot all be real. (1 mark)
 - (ii) By considering $(\alpha\beta + \beta\gamma + \gamma\alpha)^2$, find the possible values of k. (4 marks)

$$z^3 + pz^2 + qz + 37 - 36i = 0$$

where p and q are constants, has three complex roots, α , β and γ .

It is given that $\beta = -2 + 3i$ and $\gamma = 1 + 2i$.

(a) (i) Write down the value of $\alpha \beta \gamma$.

(1 mark)

(ii) Hence show that $(8+i)\alpha = 37 - 36i$.

(2 marks)

(iii) Hence find α , giving your answer in the form m + ni, where m and n are integers.

(3 marks)

(b) Find the value of p.

(1 mark)

(c) Find the value of the complex number q.

(2 marks)

4 The roots of the equation

$$z^3 + 2z^2 + 3z - 4 = 0$$

are α , β and γ .

(a) (i) Write down the value of $\alpha+\beta+\gamma$ and the value of $\alpha\beta+\beta\gamma+\gamma\alpha$.

[2 marks]

(ii) Hence show that $\alpha^2 + \beta^2 + \gamma^2 = -2$.

[2 marks]

- (b) Find the value of:
 - (i) $(\alpha + \beta)(\beta + \gamma) + (\beta + \gamma)(\gamma + \alpha) + (\gamma + \alpha)(\alpha + \beta)$;

[3 marks]

(ii) $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$.

[4 marks]

(c) Find a cubic equation whose roots are $\alpha + \beta$, $\beta + \gamma$ and $\gamma + \alpha$.

[3 marks]

- 7 The cubic equation $27z^3 + kz^2 + 4 = 0$ has roots α , β and γ .
 - (a) Write down the values of $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$.

[2 marks]

(b) (i) In the case where $\beta = \gamma$, find the roots of the equation.

[5 marks]

(ii) Find the value of k in this case.

[1 mark]

(c) (i) In the case where $\alpha = 1 - i$, find α^2 and α^3 .

[2 marks]

(ii) Hence find the value of k in this case.

[2 marks]

(d) In the case where k=-12, find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}+1$, $\frac{1}{\beta}+1$ and $\frac{1}{\gamma}+1$.

[5 marks]

- The cubic equation $3z^3 + pz^2 + 17z + q = 0$, where p and q are real, has a root $\alpha = 1 + 2i$.
 - (a) (i) Write down the value of another non-real root, β , of this equation.

[1 mark]

(ii) Hence find the value of αβ.

[1 mark]

(b) Find the value of the third root, γ, of this equation.

[3 marks]

(c) Find the values of p and q.

[3 marks]

2(a)	p = -4	B1		1
	$(\alpha + \beta + \gamma)^2 = \sum \alpha^2 + 2\sum \alpha \beta$	MI		
	$16 = 20 + 2\sum \alpha \beta$	Al		
	$\sum \alpha \beta = -2$	AIF		
	q = -2	AlF	5	
(b)	3 – ĭ is a root	ВІ		
	Third root is -2	B1F		
	$\alpha\beta\gamma = (3+i)(3-i)(-2)$	MI		
	=-20	AIF		Real αβγ
	r = +20	AlF	5	Real r
	Alternative to (b)			
	Substitute 3 + i into equation	MI		
	$(3+i)^2 = 8+6i$	BI		
	$(3+i)^3 = 18 + 26i$	B1		
	r = 20	A2,1,0		Provided r is real
E(a)(f)	$\alpha + \beta + \gamma = 4i$	Bl	1	
5(a)(i)	$\alpha + \beta + \gamma = 41$	ВІ	1	
(ii)	$\alpha\beta\gamma = 4-2i$	В1	1	
(b)(i)	$\alpha + \alpha = 4i$, $\alpha = 2i$	BI	1	AG
(ii)	$\beta \gamma = \frac{4-2i}{2i} = -2i - 1$	MI		Some method must be shown, eg $\frac{2}{i}$ – 1
	121	Al	2	AG
(iii)	$q = \alpha \beta + \beta \gamma + \gamma \alpha$	MI		
	$=\alpha(\beta+\gamma)+\beta\gamma$	MI		Or $\alpha^2 + \beta \gamma$, ie suitable grouping
	= 2i, 2i - 2i - 1 = -2i - 5	Al	3	AG
(c)	Use of $\beta + \gamma = 2i$ and $\beta \gamma = -2i - 1$	MI		Elimination of say γ to arrive at
-	$z^2 - 2iz - (1 + 2i) = 0$	Al	2	$\beta^2 - 2i\beta - (1+2i) = 0$ M1A0 unless also some reference to γ being a root
		1.4		AG
(d)	f(-1) = 1 + 2i - 1 - 2i = 0	MI		For any correct method

Q	Solution	Marks	1 otai	Comments
3(a)	$-k^3i + 2(1-i)(-k^2) + 32(1+i) = 0$	M1		Any form
	Equate real and imaginary parts:			
	$-k^3 + 2k^2 + 32 = 0$	AI		
	$-2k^2 + 32 = 0$			
		Al		
	$k = \pm 4$	Al		
	k = +4	E1	5	AG
(b)	Sum of roots is $-2(1-i)$	MI		Or $\alpha\beta\gamma = -(32+32i)$
4-7				Must be correct for MI
	Th: 1 2 2:			Must be correct for MT
	Third root 2-2i	AI√	2	The second secon

286	V 0 4		- 2	
2(a)	$\sum \alpha \beta = 6$	BI	1	
(b)(i)	Sum of squares < 0 ∴ not all real	EI		
	Coefficients real : conjugate pair	EI	2	
(ii)	$\left(\sum \alpha\right)^2 = \sum \alpha^2 + 2\sum \alpha\beta$	MIAI		A1 for numerical values inserted
	$\left(\sum \alpha\right)^2 = 0$	AIF		
	p=0	AlF	4	cao
(c)(i)	-1 - 3i is a root	B1		
	Use of appropriate relationship	- 6		
	$eg \sum \alpha = 0$	MI		M0 if $\sum \alpha^2$ used unless the root 2 is
	2	36.5		checked
	Third root 2	AIF	3	incorrect p√
(ii)	q = -(-1-3i)(-1+3i)2	MI		allow even if sign error
- "	=-20	AIF	2	ft incorrect 3 rd root
	1 otal		11	

	Lotai		11	
4(a)(i)	$\sum \alpha = -i$	BI	1	
(ii)	$\sum \alpha \beta = 3$	Bl	1	
(iii)	$\alpha\beta\gamma = 1 + i$	Bl	1	
(b)(i)	$\sum \alpha^2 = \left(\sum \alpha\right)^2 - 2\sum \alpha \beta \text{ used}$	Ml		Allow if sign error or 2 missing
	$=(-i)^2-2\times3$	A1F		
	=-7	AlF	3	ft errors in (a)
	$\sum \alpha^2 \beta^2 = \left(\sum \alpha \beta\right)^2 - 2\sum \alpha \beta \cdot \beta \gamma$	MI		Allow if sign error in 2 missing
	$= \left(\sum \alpha \beta\right)^2 - 2\alpha \beta \gamma \sum \alpha$	Al		
	=9-2(1+i)(-i)	AlF		ft errors in (a)
	=7+2i	AlF	4	ft errors in (a)
(iii)	$\alpha^2 \beta^2 \gamma^2 = (1+i)^2 = 2i$	M1 AIF	2	ft sign error in $\alpha\beta\gamma$
(c)	$z^3 + 7z^2 + (7 + 2i)z - 2i = 0$	BIF		Correct numbers in correct places
		BIF	2	Correct signs

(a)(i)	$\alpha\beta\gamma = -18 + 12i$	B1	1	accept -(18-12i)
(ii)	$\alpha + \beta + \gamma = 0$	B1	1	
(b)(i)	$\alpha = -2$	B1F	1	
an.	$\beta \gamma = \frac{\alpha \beta \gamma}{\alpha} = 9 - 6i$	M1	_	ft sign errors in (a) or (b)(i) or slips such
(11)	$\beta \gamma = \frac{\alpha}{\alpha} = 9 - 61$	A1F	2	as miscopy
(iii)	$q = \sum \alpha \beta = \alpha(\beta + \gamma) + \beta \gamma$	M1		
	$=-2\times2+9-6i$	A1F		ft incorrect $\beta \gamma$ or α
	= 5 - 6i	A1F	3	
(c)	$\beta = ki$, $\gamma = 2 - ki$	B1		
	ki(2-ki) = 9 - 6i	M1		
	$2k = -6 (k^2 = 9) k = -3$	m1		imaginary parts
	$\beta = -3i$, $\gamma = 2 + 3i$	A1	4	
	Tar	1-1	12	
4(a)	Use of $(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$	MI		*
	$1 = -5 + 2\sum \alpha \beta$	AI		
	$\sum \alpha \beta = 3$	Al	3	AG
		Ai	,	
(b)	$1(-5-3) = -23 - 3\alpha\beta\gamma$	MI		For use of identity
	$\alpha\beta\gamma = -5$	Al	2	
(c)	$z^3 - z^2 + 3z + 5 = 0$	MI		
1-7	2 -2 -32-7J-V	AIF	2	For correct signs and "= 0"
(d)	$\alpha^2 + \beta^2 + \gamma^2 < 0 \Rightarrow$ non real roots	Bl		
(u)	Coefficients real ∴ conjugate pair	BI	2	
(e)	$f(-1) = 0 \Rightarrow z + 1$ is a factor	MIAI		
	$(z+1)(z^2-2z+5) = 0$	Al		
	$z = -1, 1 \pm 2i$	Al	4	
2/-1	2+3i	Di		Comments
3(a)		В1	1	
(b)(i)	$\alpha\beta = 13$	B1	1	
(ii)	$\alpha\beta + \beta\gamma + \gamma\alpha = 25$	MI		M1A0 for -25 (no ft)
. ,	$\gamma(\alpha+\beta)=12$	A1F		
	$\gamma = 3$	AIF	3	ft error in $\alpha\beta$
ans	$p = -\sum \alpha = -7$	MI		MI for a parent scale of female.
(m)	$p = -\sum \alpha = -7$ $q = -\alpha \beta \gamma = -39$	AlF	2.1	M1 for a correct method for either p or q
	$q = -\alpha p \gamma = -39$	AIF	3	ft from previous errors p and q must be real
				for sign errors in p and q allow M1 but A0
	Alternative for (b)(ii) and (iii):			
(ii)	Attempt at $(z-2+3i)(z-2-3i)$	(M1)		
1	$z^2 - 4z + 13$	(AI)		
	cubic is $(z^2 - 4z + 13)(z - 3)$: $\gamma = 3$	(A1)	(3)	
		4.0 1.0 1.0		
(iii)	Multiply out or pick out coefficients	(M1) (A1,		

V	Solution	Marks	Total	Comments
3(a)(i)	$\beta = 2 - 2\sqrt{3}i$	B1	1	
(ii)	$\alpha\beta\gamma = -8$	MI		Allow for +8 but not ±16
()	$\alpha\beta\gamma = -8$ $\alpha\beta = 16$	B1		THOW IN TO BUT HOT 210
	$\gamma = -\frac{1}{2}$	Al	3	
(iii)	Either $\frac{-p}{2} = \alpha + \beta + \gamma$ or $\frac{q}{2} = \alpha\beta + \beta\gamma + \gamma\alpha$	МІ		SC if failure to divide by 2 throughout allow MIA1 for either p or q correct ft
	p = -7, q = 28	AIF, AIF	3	ft incorrect γ
	Alternative to (a)(ii) and (a)(iii): $(z^2 - 4z + 16)(az + b)$ $\alpha\beta = 16$ $a = 2, b = +1, \gamma = -\frac{1}{2}$ Equating coefficients p = -7	(M1) (B1) (A1) (M1)		
	q = 28	(AIF)		
(b)(i)	$r=4, \ \theta=\frac{\pi}{3}$	B1,B1	2	
(ii)	$\left(2 + 2\sqrt{3}\mathrm{i}\right)^n = \left(4\mathrm{e}^{\frac{\mathrm{m}}{3}}\right)^n$	MI		
	$=4^{n}\left(\cos\frac{n\pi}{3}+i\sin\frac{n\pi}{3}\right)$	AÌ	2	AG
	$\left(2 - 2\sqrt{3}i\right)^n = 4^n \left(\cos\frac{n\pi}{3} - i\sin\frac{n\pi}{3}\right)$	Bl		
	$\alpha^n + \beta^n + \gamma^n = 4^n \left(\cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3} \right)$			
	$+4^{n}\left(\cos\frac{n\pi}{3}-i\sin\frac{n\pi}{3}\right)+\left(-\frac{1}{2}\right)^{n}$	M1		
	$=2^{2n+1}\cos\frac{n\pi}{3} + \left(-\frac{1}{2}\right)^n$	AI	3	AG

	LVIII		- 1	
4(a)	$\alpha + \beta + \gamma = 2$	Bl	1	
(b)(i)	α is a root and so satisfies the equation	E1	1	
(ii)	$\sum \alpha^3 - 2\sum \alpha^2 + p\sum \alpha + 30 = 0$	MIAI		
	Substitution for $\sum \alpha^3$ and $\sum \alpha$	ml		
	$\sum \alpha^2 = p + 13$	Al	4	AG
(iii)	$(\sum \alpha)^2 = \sum \alpha^2 + 2\sum \alpha \beta$ used	M1		do not allow this M mark if used in (b)(ii
	p = -3	Al	2	AG
(c)(i)	f(-2) = 0	MI		
	$\alpha = -2$	Al	2	
(ii)	$(z+2)(z^2-4z+5)=0$	MI		For attempting to find quadratic factor
	$(z+2)(z^2-4z+5)=0$ $z = \frac{4\pm\sqrt{-4}}{2}$	ml		Use of formula or completing the square m0 if roots are not complex
	=2±i	AI	3	CAO

	Lotal		b	
3(a)	$(1+i)^2 = 2i \text{ or } (1+i) = \sqrt{2} e^{\frac{\pi i}{4}}$ 2i(1+i) = 2i - 2	Bl		
	2i(1+i) = 2i - 2	BI	2	AG
				Alternative method:
				$(1+i)^3 = 1 + 3i + 3i^2 + i^3$ B1
				= 2i - 2 B1
(b)(i)	Substitute $z = 1 + i$	MI		
	Correct expansion	Al		allow for correctly picking out either the real or the imaginary parts
	k = -5	A1	3	Tour or any manginary parts
(ii)	$\beta + \gamma = 5 + \mathbf{i} - \alpha = 4$	BI	1	AG
(iii)	$\alpha\beta\gamma = 5(1+i)$	M1		allow if sign error
	$\beta \gamma = 5$	A1F		ft incorrect k
	$z^2 - 4z + 5 = 0$	MI		
	Use of formula or $(z-2)^2 = -1$	A1F		No ft for real roots if error in k
	$z = 2 \pm i$	A1F	5	
	NB allow marks for (b) in whatever order they appear			

	1 otai		b	
4(a)(i)	$\sum \alpha = 2$	BI		
	$\sum \alpha \beta = 0$	Bl	2	
(ii)	$\sum \alpha^2 = (\sum \alpha)^2 - 2\sum \alpha \beta$	MI		Used. Watch $\sum \alpha = -2$ (M1A0)
	= 4	Al	2	AG
(iii)	Clear explanation	El	1	eg α satisfies the cubic equation since it is a root. Accept $z = \alpha$
(iv)	$\sum \alpha^3 = 2 \sum \alpha^2 - 3k$	MI		Or $\sum \alpha^3 = (\sum \alpha)^3 - 3\sum \alpha \sum \alpha \beta + 3\alpha \beta \gamma$
	= 8 - 3k	Al	2	AG
(b)(i)	$\alpha^4 = 2\alpha^3 - k\alpha$	BI		
	$\sum \alpha^4 = 2 \sum \alpha^3 - k \sum \alpha$	MI		Or $\sum \alpha^4 = (\sum \alpha^2)^2 - 2(\sum \alpha \beta)^2 + 4\alpha \beta \gamma \sum \alpha$
	=2(8-3k)-2k	Al		ft on $\sum \alpha = -2$
	k = 2	Al	4	AG
(ii)	$\sum \alpha^5 = 2\sum \alpha^4 - k\sum \alpha^2$	MI		
	Substitution of values	Al		
	= -8	Al	3	

(ii)	$\sum \alpha^{5} = 2 \sum \alpha^{4} - k \sum \alpha^{2}$ Substitution of values	MI		
	= -8	Al Al	3	
	1 otai		8	
7(a)	Use of $(\Sigma \alpha)^2 = \Sigma \alpha^2 + 2\Sigma \alpha \beta$	M1		
		Al	2	AG
(b)	p = 0, q = 5 + 6i	B1,B1	2	.1
(c)(i)	Substitute 3i for z or use $3i\beta\gamma = -r$	Ml		allow for $3i\beta\gamma = r$
	$-27i + 15i - 18 + r = 0$ or $\beta \gamma = 5 + 6i + \alpha^2$	Al		any form
	r = 18 + 12i	AIF	3	one error
(ii)	Cubic is $(z-3i)(z^2+3iz-4+6i)$ or use of $\beta \gamma$ and $\beta + \gamma$	MIAI	2	clearly shown
(iii)	f(-2) = 0 or equate imaginary parts	M1		Language to the second second
	$\beta = -2, \ \gamma = 2 - 3i$	A1,A1F	3	correct answers no working and no check B1 only

	1 Otal		0	
4(a)(i)	$\alpha + \beta + \gamma = 0$	BI	1	
(ii)	$\alpha\beta\gamma = -q$	В1	Ì	
(b)	$\alpha^3 + p\alpha + q = 0$	Ml		
	$\sum \alpha^3 + p \sum \alpha + 3q = 0$	m1		
	$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma$	A1	3	AG
	Alternative to (b) Use of			
	$(\sum \alpha)^{3} = (\sum \alpha^{3}) + 6\alpha\beta\gamma + 3(\sum \alpha \sum \alpha\beta - 3\alpha\beta\gamma)$	(M1)		
	Substitution of $\sum \alpha = 0$	(m1)		
	Result	(A1)		
(c)(i)	$\beta = 4 - 7i, \ \gamma = -8$	B1,B1	2	
(ii)	Attempt at either p or q	MI		
	p=1	AlF		
	q = 520	AlF	3	ft incorrect roots provided p and q are rea
(d)	Replace z by $\frac{1}{z}$ in cubic equation	MI		or $\sum \frac{1}{\alpha} = -\frac{p}{q}$, $\sum \frac{1}{\alpha\beta} = 0$, $\frac{1}{\alpha\beta\gamma} = -\frac{1}{q}$
2-6	4	AlF		$-\alpha q - \alpha \beta \alpha \beta \gamma q$ ft on incorrect p and/or q
	$520z^3 + z^2 + 1 = 0$ coefficients must be integers	Al	3	CAO

Q	Solution	Marks	Total	Comments
4(a)(i)	$\alpha + \beta + \gamma = 5$	BI		
	$\alpha\beta\gamma = 4$	BI	2	
(ii)	$\alpha\beta\gamma^2 + \alpha\beta^2\gamma + \alpha^2\beta\gamma = \alpha\beta\gamma(\alpha + \beta + \gamma)$	M1		
	$=5\times4=20$	Al√	2	FT their results from (a)(i)
(b)(i)	If α, β, γ are all real then			
	$\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2 \geqslant 0$			
	Hence α, β, γ cannot all be real	EI	I	argument must be sound
(ii)	$\alpha\beta + \beta\gamma + \gamma\alpha = k$	BI		$\sum \alpha \beta = k$ PI
	$(\alpha\beta + \beta\gamma + \gamma\alpha)^{2}$ $= \sum \alpha^{2}\beta^{2} + 2(\alpha\beta\gamma^{2} + \alpha\beta^{2}\gamma + \alpha^{2}\beta\gamma)$ $= -4 + 2(20)$	MI		correct identity for $(\sum \alpha \beta)^2$
	$= \sum \alpha^2 \beta^2 + 2(\alpha \beta \gamma^2 + \alpha \beta^2 \gamma + \alpha^2 \beta \gamma)$			correct identity for $(\angle ap)$
	=-4+2(20)	Al√	50-1	substituting their result from (a)(ii)
	$k = \pm 6$	Al eso	4	must see k=

V	Solution	Mains	LULAL	Comments
5(a)(i)	$(\alpha\beta\gamma =)$ $-37+36i$	BI	1	
(ii)	$(\beta \gamma =)$ $(-2+3i)(1+2i) = -2+3i-4i-6$	MI		correct unsimplified but must simplify i
	$(-8-i) \alpha = -37 + 36i$ $\Rightarrow (8+i) \alpha = 37 - 36i$	Aleso	2	AG be convinced
(iii)	$\Rightarrow \alpha = \frac{37 - 36i}{8 + i} \times \frac{8 - i}{8 - i}$	М1		
61	$=\frac{296-37i-288i-36}{65}$	Al		correct unsimplified
	$=\frac{260-325i}{65}$ = 4 - 5i	Alcao	3	
				Alternative $(8+i)(m+ni) = 37-36i$
				8m - n = 37; m + 8n = -36 M1 either $m = 4$ or $n = -5$ A1 $\alpha = 4 - 5i$ A1
(b)	$\alpha + \beta + \gamma = -p$ -2+3i+1+2i+4-5i = 3			u 4-3i
- 11	$(\Rightarrow p =) -3$	B1	1	
(c)	$\alpha\beta + \beta\gamma + \gamma\alpha = q$			$q = \sum \alpha \beta$ and attempt to evaluate three
- 4	(7+22i)+(-8-i)+(14+3i)=q	MI		products FT "their" a
	q = 13 + 24i	Alcao	2	

u	Joidton	IVIAIN	IVIAI	Comment
4 (a) (i)	$\alpha + \beta + \gamma = -2$ $\alpha\beta + \beta\gamma + \gamma\alpha = 3$	B1 B1	2	
		D.	15	
(ii)	$\alpha^2 + \beta^2 + \gamma^2$			
	$= (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$	M1		correct formula
	= 4 - 6 = -2	A1cso	2	AG be convinced; must see $4-6$ A0 if $\alpha + \beta + \gamma$ or $\alpha\beta + \beta\gamma + \gamma\alpha$ not correct
(b) (i)	$\sum (\alpha + \beta)(\beta + \gamma) = \sum \alpha^2 + 3\sum \alpha\beta$	MI		or may use $12+4\sum \alpha+\sum \alpha\beta$
	= -2 + 9	m1		ft their $\alpha\beta + \beta\gamma + \gamma\alpha$
	= 7	A1	3	12 12 13
(ii)	$\alpha\beta\gamma = 4$	B1		PI when earning m1 later
	$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$	1-1		or $(-2-\alpha)(-2-\beta)(-2-\gamma)$
	$= \sum \alpha \sum \alpha \beta - \alpha \beta \gamma$	MI		$= -8 - 4\sum \alpha - 2\sum \alpha \beta - \alpha \beta \gamma$
	= -6-4	m1	!	Sub their $\sum \alpha$, $\sum \alpha \beta \& \alpha \beta \gamma$
	=-10	A1	4	
(c)	Sum of new roots = $2\sum \alpha = -4$	B1		or NMS coefficient of z ² written as +4
	$z^3 \pm 4z^2 + "their7"z - "their - 10" (=0)$	MI		correct sub of their results from part (b)
	New equation $z^3 + 4z^2 + 7z + 10 = 0$	A1	3	W. T. T. D.
				Alternative $y = -2 - z$ B1 $(-2 - y)^3 + 2(-2 - y)^2 + 3(-2 - y) - 4 = 0$
				M1
				$y^3 + 4y^2 + 7y + 10 = 0 \mathbf{A1}$
				NB candidate may do this first and then obtain results for part (b)

Q7	Solution	Mark	Total	Comment
(a)	$\alpha\beta + \beta\gamma + \gamma\alpha = 0$	B1		
	$\alpha\beta\gamma = -\frac{4}{27}$	В1	2	
(b)(i)	$\alpha\beta + \alpha\beta + \beta^2 = 0$; $\alpha\beta^2 = -\frac{4}{27}$	BI		Married of a describer 1976
	27	ы	111	May use γ instead of β throughout (b)(i
	. 1 . 8	MI		Clear attempt to eliminate either α or β from "their" equations
	$\alpha^3 = -\frac{1}{27}$ or $\beta^3 = \frac{8}{27}$	A1		correct
	either $\alpha = -\frac{1}{3}$ or $\beta = \frac{2}{3}$	AI		
	$\alpha = -\frac{1}{3}$, $\beta = \frac{2}{3}$, $\gamma = \frac{2}{3}$	A1	5	all 3 roots clearly stated
(ii)	$\left(\sum \alpha = 1 = -\frac{k}{27} \implies\right) k = -27$	В1	1	or substituting correct root into equation
(c)(i)	$\alpha^2 = -2i$	BI		
	$\alpha^3 = -2 - 2i$	B1	2	
(ii)	27(-2-2i) - 2ik + 4 = 0	MI		correctly substituting "their" $\alpha^2 = -2i$ and "their" $\alpha^3 = -2 - 2i$
	k = -27 + 25i	AI	2	and their $\alpha = -2 - 21$
(d)	$y = \frac{1}{z} + 1 \Rightarrow z = \frac{1}{y - 1}$	В1		may use any letter instead of y
	$\frac{27}{(v-1)^3} - \frac{12}{(v-1)^2} + 4 = 0$	MI		sub their z into cubic equation
	$27-12(y-1)+4(y-1)^3=0$	Al		removing denominators correctly
	$27 - 12y + 12 + 4(y^3 - 3y^2 + 3y - 1) = 0$	A1		correct and (y-1)3 expanded correctly
	$4y^3 - 12y^2 + 35 = 0$	A1	5	
	Alternative: $\sum \alpha' = 3 + \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = 3$	(B1)		sum of new roots =3
	$\sum \alpha' \beta' = 3 + \frac{2(\alpha\beta + \beta\gamma + \gamma\alpha) + \alpha + \beta + \gamma}{\alpha\beta\gamma}$	(M1)		M1 for either of the other two formulae correct in terms of $\alpha\beta\gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and
	=0	(A1)		$\alpha + \beta + \gamma$
	$\prod = 1 + \frac{\alpha\beta + \beta\gamma + \gamma\alpha + 1 + \alpha + \beta + \gamma}{\alpha\beta\gamma}$			
	$=\frac{-35}{4}$	(A1)		
	$4y^3 - 12y^2 + 35 = 0$	(A1)	(5)	may use any letter instead of y

22	Solution	Mark	Total	Comment
(a)(i)	1-2i	B1	1	
(ii)	$(\alpha\beta=1+4=) 5$	B1	1	
(b)	$\sum \alpha \beta = \frac{17}{3}$	B1	17	PI by next line
	$\alpha \gamma + \beta \gamma + "their"5 = "their" \frac{17}{3}$	М1		FT "their" $\alpha\beta$ and $\sum \alpha\beta$ values
	$\Rightarrow \gamma = \frac{1}{3}$	Al	3	
				Alternative $z^{3} + \frac{p}{3}z^{2} + \frac{17}{3}z + \frac{q}{3}$ quadratic factor $z^{2} - 2z + 5$ B1 $(z^{2} - 2z + 5)(z - \gamma) \text{ comparing}$ coefficient of z : $5 + 2\gamma = \frac{17}{3}$ M1 $\Rightarrow \gamma = \frac{1}{3} \text{ A1 (3)}$
(c)	$\alpha+\beta+\gamma=\frac{-p}{3}$, $\alpha\beta\gamma=\frac{-q}{3}$ $p=-7$ $q=-5$	M1 A1		Either of these expressions correct \mathbf{PI} by correct p or q
	q = -5	Al	3	Alternative comparing coefficients either $-5\gamma = \frac{q}{3}$ or $-\gamma - 2 = \frac{p}{3}$ M1 $p = -7$ A1; $q = -5$ A1 (3)