FP2 Hyperbolic Functions

1 (a) Express

 $5 \sinh x + \cosh x$

in the form $Ae^x + Be^{-x}$, where A and B are integers.

(2 marks)

(b) Solve the equation

$$5 \sinh x + \cosh x + 5 = 0$$

giving your answer in the form $\ln a$, where a is a rational number.

(4 marks)

4 (a) Sketch the graph of y = tanh x.

(2 marks)

(b) Given that $u = \tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} to show that

$$x = \frac{1}{2} \ln \left(\frac{1+u}{1-u} \right) \tag{6 marks}$$

(c) (i) Show that the equation

$$3 \operatorname{sech}^2 x + 7 \tanh x = 5$$

can be written as

$$3\tanh^2 x - 7\tanh x + 2 = 0 \tag{2 marks}$$

(ii) Show that the equation

$$3\tanh^2 x - 7\tanh x + 2 = 0$$

has only one solution for x.

Find this solution in the form $\frac{1}{2} \ln a$, where a is an integer. (5 marks)

1 (a) Show that

$$9 \sinh x - \cosh x = 4e^x - 5e^{-x}$$
 (2 marks)

(b) Given that

$$9 \sinh x - \cosh x = 8$$

find the exact value of tanh x.

(7 marks)

5 (a) Using the identities

$$\cosh^2 t - \sinh^2 t = 1, \quad \tanh t = \frac{\sinh t}{\cosh t} \quad \text{and} \quad \operatorname{sech} t = \frac{1}{\cosh t}$$

show that:

(i)
$$\tanh^2 t + \operatorname{sech}^2 t = 1$$
; (2 marks)

(ii)
$$\frac{d}{dt}(\tanh t) = \operatorname{sech}^2 t$$
; (3 marks)

(iii)
$$\frac{d}{dt}(\operatorname{sech} t) = -\operatorname{sech} t \tanh t$$
. (3 marks)

(b) A curve C is given parametrically by

$$x = \operatorname{sech} t$$
, $y = 4 - \tanh t$

(i) Show that the arc length, s, of C between the points where t = 0 and $t = \frac{1}{2} \ln 3$ is given by

$$s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t \, \mathrm{d}t \tag{4 marks}$$

(ii) Using the substitution $u = e^{t}$, find the exact value of s.

(6 marks)

4 (a) Prove that the curve

$$y = 12 \cosh x - 8 \sinh x - x$$

has exactly one stationary point.

(7 marks)

(b) Given that the coordinates of this stationary point are (a, b), show that a + b = 9.

2 (a) Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} to show that

$$\cosh x \cosh y - \sinh x \sinh y = \cosh(x - y) \tag{4 marks}$$

(b) It is given that x satisfies the equation

$$\cosh(x - \ln 2) = \sinh x$$

- (i) Show that $\tanh x = \frac{5}{7}$. (4 marks)
- (ii) Express x in the form $\frac{1}{2} \ln a$. (2 marks)
- 1 (a) Show, by means of a sketch, that the curves with equations

$$y = \sinh x$$

and

$$y = \operatorname{sech} x$$

have exactly one point of intersection.

(4 marks)

- (b) Find the x-coordinate of this point of intersection, giving your answer in the form $a \ln b$. (4 marks)
- 3 A curve has cartesian equation

$$y = \frac{1}{2} \ln(\tanh x)$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sinh 2x} \tag{4 marks}$$

(b) The points A and B on the curve have x-coordinates ln 2 and ln 4 respectively. Find the arc length AB, giving your answer in the form p ln q, where p and q are rational numbers. (8 marks)

OHESTION

- 1 (a) Sketch the curve $y = \cosh x$. (1 mark)
 - (b) Solve the equation

$$6\cosh^2 x - 7\cosh x - 5 = 0$$

giving your answers in logarithmic form.

(6 marks)

6 (a) Show that

$$\frac{1}{4}(\cosh 4x + 2\cosh 2x + 1) = \cosh^2 x \cosh 2x \tag{3 marks}$$

(b) Show that, if $y = \cosh^2 x$, then

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cosh^2 2x \tag{3 marks}$$

(c) The arc of the curve $y = \cosh^2 x$ between the points where x = 0 and $x = \ln 2$ is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$S = \frac{\pi}{256} \left(a \ln 2 + b \right)$$

where a and b are integers.

(7 marks)

1 (a) Show that

$$12\cosh x - 4\sinh x = 4e^x + 8e^{-x}$$
 (2 marks)

(b) Solve the equation

$$12\cosh x - 4\sinh x = 33$$

giving your answers in the form $k \ln 2$.

(5 marks)

5 (a) Using the definition
$$\tanh y = \frac{e^y - e^{-y}}{e^y + e^{-y}}$$
, show that, for $|x| < 1$,

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \tag{3 marks}$$

(b) Hence, or otherwise, show that
$$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$$
. (3 marks)

$$\int_0^{\frac{1}{2}} 4 \tanh^{-1} x \, \mathrm{d}x = \ln \left(\frac{3^m}{2^n} \right)$$

where m and n are positive integers.

(5 marks)

2 (a) (i) Sketch on the axes below the graphs of
$$y = \sinh x$$
 and $y = \cosh x$. (3 marks)

(ii) Use your graphs to explain why the equation

$$(k + \sinh x) \cosh x = 0$$

where k is a constant, has exactly one solution.

(1 mark)

(b) A curve C has equation $y = 6 \sinh x + \cosh^2 x$. Show that C has only one stationary point and show that its y-coordinate is an integer. (5 marks)

6 (a) Show that
$$\frac{1}{5\cosh x - 3\sinh x} = \frac{e^x}{m + e^{2x}}$$
, where m is an integer. (3 marks)

(b) Use the substitution $u = e^x$ to show that

$$\int_0^{\ln 2} \frac{1}{5\cosh x - 3\sinh x} \, \mathrm{d}x = \frac{\pi}{8} - \frac{1}{2} \tan^{-1} \left(\frac{1}{2}\right) \tag{5 marks}$$

7 (a) (i) Show that

$$\frac{d}{du} \left(2u\sqrt{1 + 4u^2} + \sinh^{-1} 2u \right) = k\sqrt{1 + 4u^2}$$

where k is an integer.

(4 marks)

(ii) Hence show that

$$\int_0^1 \sqrt{1 + 4u^2} \, du = p\sqrt{5} + q \sinh^{-1} 2$$

where p and q are rational numbers.

(2 marks)

- (b) The arc of the curve with equation $y = \frac{1}{2}\cos 4x$ between the points where x = 0 and $x = \frac{\pi}{8}$ is rotated through 2π radians about the x-axis.
 - (i) Show that the area S of the curved surface formed is given by

$$S = \pi \int_{0}^{\frac{\pi}{8}} \cos 4x \sqrt{1 + 4\sin^2 4x} \, dx$$
 (2 marks)

(ii) Use the substitution $u = \sin 4x$ to find the exact value of S. (4 marks)

5 (a) Using the definition
$$\sinh\theta=\frac{1}{2}(\mathrm{e}^{\theta}-\mathrm{e}^{-\theta})$$
, prove the identity

$$4 \sinh^3 \theta + 3 \sinh \theta = \sinh 3\theta$$

[3 marks]

(b) Given that $x = \sinh \theta$ and $16x^3 + 12x - 3 = 0$, find the value of θ in terms of a natural logarithm.

[4 marks]

(c) Hence find the real root of the equation $16x^3 + 12x - 3 = 0$, giving your answer in the form $2^p - 2^q$, where p and q are rational numbers.

[2 marks]

2 (a) Sketch the graph of $y = \tanh x$ and state the equations of its asymptotes.

[3 marks]

(b) Use the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} to show that

$$\operatorname{sech}^2 x + \tanh^2 x = 1$$

[3 marks]

(c) Solve the equation $6 \operatorname{sech}^2 x = 4 + \tanh x$, giving your answers in terms of natural logarithms.

0

[5 marks]

Given that $y = \sinh x$, use the definition of $\sinh x$ in terms of e^x and e^{-x} to show that $x = \ln(y + \sqrt{y^2 + 1})$.

[4 marks]

- (b) A curve has equation $y = 6 \cosh^2 x + 5 \sinh x$.
 - (i) Show that the curve has a single stationary point and find its *x*-coordinate, giving your answer in the form $\ln p$, where p is a rational number.

[5 marks]

(ii) The curve lies entirely above the x-axis. The region bounded by the curve, the coordinate axes and the line $x = \cosh^{-1} 2$ has area A.

Show that

$$A = a \cosh^{-1} 2 + b\sqrt{3} + c$$

where a, b and c are integers.

[5 marks]

1(a)	$5\left(\frac{e^x - e^{-x}}{2}\right) + \left(\frac{e^x + e^{-x}}{2}\right)$	M1		M0 if no 2s in denominator
	$=3e^x-2e^{-x}$	A1	2	
(b)	$3e^{x} - 2e^{-x} + 5 = 0$ $3e^{2x} + 5e^{x} - 2 = 0$	M1		ft if 2s missing in (a)
	$(3e^x - 1)(e^x + 2) = 0$	A1F		
	$e^x \neq -2$	E1		any indication of rejection
	$e^x = \frac{1}{3} \qquad x = \ln \frac{1}{3}$	A1F	4	provided quadratic factorises into real factors
	Total		6	

4(a)	Sketch, approximately correct shape	B1		B0 if course touches accompatates
	Asymptotes at $y = \pm 1$	В1	2	B0 if curve touches asymptotes lines of answer booklet could be used to asymptotes be strict with sketch
(b)	Use of $u = \frac{\sinh x}{\cosh x}$	М1		
	$= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \text{ or } \frac{e^{2x} - 1}{e^{2x} + 1}$	A1		
	$u\left(e^{x}+e^{-x}\right)=e^{x}-e^{-x}$	M1		M1 for multiplying up
	$u\left(e^{x} + e^{-x}\right) = e^{x} - e^{-x}$ $e^{-x}\left(1 + u\right) = e^{x}\left(1 - u\right)$ $e^{2x} = \frac{1 + u}{1 - u}$	A1		A1 for factorizing out e's or M1 for attempt at $1+u$ and $1-u$ in terms of e^x
	$e^{2x} = \frac{1+u}{1-u}$	m1		
	$x = \frac{1}{2} \ln \left(\frac{1+u}{1-u} \right)$	A1	6	AG
4(c)(i)	Use of $\tanh^2 x = 1 - \operatorname{sech}^2 x$	M1		
	Printed answer	A1	2	
(ii)	$(3 \tanh x - 1)(\tanh x - 2) = 0$ $\tanh x \neq 2$	M1 E1		Attempt to factorise Accept tanh x≠2 written down but not ignored or just crossed out
	$tanh x = \frac{1}{3}$	A1		
	$\tanh x = \frac{1}{3}$ $x = \frac{1}{2} \ln 2$	M1 A1F	5	ft
	To	tal	15	

	Total		9	
	$\tanh x = \frac{\frac{5}{2} - \frac{2}{5}}{\frac{5}{2} + \frac{2}{5}} = \frac{21}{29}$	MI AIF	7	M1 PI for attempt to use $\tanh x = \frac{\sinh x}{\cosh x}$ or equivalent fraction
	$e^x = \frac{5}{2}$	AlF		
	$e^x \neq -\frac{1}{2}$	EIF		PI but not ignored
	$4e^{2x} - 8e^{x} - 5 = 0$ $(2e^{x} - 5)(2e^{x} + 1) = 0$	Ml		ft provided quadratic factorises (or use of formula)
	$4e^{2x} - 8e^x - 5 = 0$	A1		The second of the Second
(b)	Attempt to multiply by ex	MI		
	$=4e^x-5e^{-x}$	Al	2	AG
1(a)	$\frac{9(e^{x}-e^{-x})}{2}-\frac{e^{x}+e^{-x}}{2}$	M1		M0 if $\cosh x$ mixed up with $\sinh x$

	Total		18	
	$=\frac{2\pi}{3} - \frac{2\pi}{4} = \frac{\pi}{6}$	AI	6	CAO
	Change limits correctly or change back to t	mI		At some stage
	$\left[2\tan^{-1}u\right]$	AI		Or 2tan ⁻¹ e ^t
	$\int \operatorname{sech} t \mathrm{d}t = \int \frac{2}{u^2 + 1} \mathrm{d}u$	MIAI		CAO M1 for putting integrand in terms of u (no sech (ln u))
(ii)	$u = e^t$ $du = e^t dt$	В1		
	$\therefore s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t dt$	AI	4	AG (including limits)
	$= \operatorname{sech}^2 t$	Al		Correct formula only for mi
200		ml		squaring for this M1 Correct formula only for m1
(b)(i)	$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \operatorname{sech}^4 t + \operatorname{sech}^2 t \tanh^2 t$	MI		Allow slips of sign before
	= $-$ sech t tanh t	A1	3	AG
(iii)	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{sech}t) = -(\cosh t)^{-2}\sinh t$	MIAI		Allow A1 if negative sign missing
	$= \operatorname{sech}^2 t$	AI	3	AG
(ii)	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\sinh t}{\cosh t} \right) = \frac{\cosh^2 t - \sinh^2 t}{\cosh^2 t}$	MIAI		Page 1
	Rearrange	AI	2	AG If solved back to front with no conclusion ending $\cosh^2 t - \sinh^2 t = 1$ B1 only
5(a)(i)	Divide $\cosh^2 t - \sinh^2 t = 1$ by $\cosh^2 t$	M1		$Or \frac{\sinh^2 t}{\cosh^2 t} + \frac{1}{\cosh^2 t}$

Q	Solution	Marks	Total	Comments
4(a)	dx	BI		The B1 and M1 could be in reverse order if put in terms of e first
	$12\frac{(e^{x} - e^{-x})}{2} - 8\frac{(e^{x} + e^{-x})}{2} - 1 = 0$ $2e^{2x} - e^{x} - 10 = 0$	Ml		M0 if $\sinh x$ and $\cosh x$ in terms of e^x are interchanged
	$2e^{2x} - e^x - 10 = 0$	AlF		ft slips of sign
	$(2e^x - 5)(e^x + 2) = 0$	MIAIF		ft provided quadratic factorises
	$e^x \neq -2$	El		some indication of rejection needed
	$x = \ln \frac{5}{2}$ one stationary point	AlF	7	Condone $e^x = \frac{5}{2}$ with statement provide quadratic factorises Special Case If $\frac{dy}{dx} = 12 \sinh x - 8 \cosh x$ B0 For substitution in terms of e^x M1 leading to $e^{2x} = 5$ A1
(b)	$b = 12 \frac{\left(\frac{5}{2} + \frac{2}{5}\right)}{2} - 8 \frac{\left(\frac{5}{2} - \frac{2}{5}\right)}{2} - \ln \frac{5}{2}$ $= \frac{174}{10} - \frac{84}{10} - \ln \frac{5}{2}$ $= 9 - a$	MIAIF AI	4	Then M0 for substitution into original equation CAO AG; accept $b = 9 - a$
			64	LATE SECOND D = 4 = //

$=\frac{1}{2}\ln 6$	AI	2	
$x = \frac{1}{2} \ln \left(\frac{1 + \frac{5}{7}}{1 - \frac{5}{7}} \right)$ or $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{5}{7}$	MI		Could be embedded in (b)(i)
$4 4$ $\tanh x = \frac{5}{7}$	AI	4	AG $\tanh x = \frac{5}{7}$ A1
	AIF		used F $e^x = \sqrt{6} \text{ A1}$
$ \cosh(\ln 2) = \frac{5}{4} $ any method	BI		Both $e^{x-\ln 2} = \frac{e^x}{2}$ or $e^{-x+\ln 2} = 2e^x$
$\cosh(x - \ln 2) = \cosh x \cosh(\ln 2)$ $-\sinh x \sinh(\ln 2)$	MI		Alternative: $\frac{e^{x-\ln 2} + e^{-x+\ln 2}}{2} = \frac{e^x - e^{-x}}{2} \text{ A}$
$= \frac{1}{2} \left(e^{x-y} + e^{-(x-y)} \right) = \cosh(x-y)$	AI	4	AG
Correct expansions	AI		Use of exy A0
$\frac{(e^{x}+e^{-x})(e^{y}+e^{-y})}{2} - \frac{(e^{x}-e^{-x})(e^{y}-e^{-y})}{2}$	MIAI		M0 if sinh and cosh confused M1 for formula quoted correctly
	$= \frac{1}{2} \left(e^{x-y} + e^{-(x-y)} \right) = \cosh(x-y)$ $\cosh(x-\ln 2) = \cosh x \cosh(\ln 2)$ $-\sinh x \sinh(\ln 2)$ $\cosh(\ln 2) = \frac{5}{4}$ $\sinh(\ln 2) = \frac{3}{4}$ $\frac{5}{4} \cosh x = \frac{7}{4} \sinh x$ $\tanh x = \frac{5}{7}$ $x = \frac{1}{2} \ln \left(\frac{1+\frac{5}{7}}{1-\frac{5}{7}} \right) \text{ or } \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{5}{7}$	Correct expansions $= \frac{1}{2} \left(e^{x-y} + e^{-(x-y)} \right) = \cosh(x-y)$ $= \cosh(x-\ln 2) = \cosh x \cosh(\ln 2)$ $-\sinh x \sinh(\ln 2)$ $\cosh(\ln 2) = \frac{5}{4}$ $\sinh(\ln 2) = \frac{3}{4}$ $\sinh(\ln 2) = \frac{3}{4}$ $\sinh(\ln 2) = \frac{7}{4} \sinh x$ $\tanh x = \frac{5}{7}$ A1 $x = \frac{1}{2} \ln \left(\frac{1 + \frac{5}{7}}{1 - \frac{5}{7}} \right) \text{ or } \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{5}{7}$ M1	Correct expansions $= \frac{1}{2} \left(e^{x-y} + e^{-(x-y)} \right) = \cosh(x-y)$ $= \cosh(x-\ln 2) = \cosh x \cosh(\ln 2)$ $-\sinh x \sinh(\ln 2)$ $\cosh(\ln 2) = \frac{5}{4}$ $\sinh(\ln 2) = \frac{3}{4}$ any method $\sinh(\ln 2) = \frac{3}{4}$ $\tanh x = \frac{5}{7}$ A1 $x = \frac{1}{2} \ln \left(\frac{1 + \frac{5}{7}}{1 - \frac{5}{7}} \right) \text{ or } \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{5}{7}$ M1

42.8	1		- 7 101	
1(a)	x			
	Sketch $y = \sinh x$ Sketch $y = \operatorname{sech} x$: Symmetry about $x = 0$ with max point Asymptote $y = 0$	BI BI BI		gradient > 0 at $(0, 0)$; no asymptotes must not cross x-axis
	Point (0, 1) marked or implied	Bl	4	must not cross x axis
(b)	$\sinh x = \frac{1}{\cosh x}$ $\sinh 2x = 2$ Use of ln	MI MI mI		use of double angle formula dependent on previous M2
	$x = \frac{1}{2}\ln(2 + \sqrt{5})$ or $\frac{1}{2}(e^{2x} - e^{-2x}) = 2 \text{OE}$ $e^{4x} - 4e^{2x} - 1 = 0$	(MI) (MI)	4	incorrect $\sinh x$, $\cosh x$ M0 (no marks) ie multiply by e^{2x} and rewrite
- 11	Correct use of formula Result	(m1) (A1)	(4)	
	Kesiii	(AI)	(4)	

3(a)	$\frac{dy}{dx} = \frac{1}{2 \tanh x}$	Bl		
	\times sech ² x	B1		
	$= \frac{1}{2\sinh x \cosh x}$	MI		for expressing in terms of $\sinh x$ and $\cosh x$
	$=\frac{1}{\sinh 2x}$	AI	4	AG; PI by previous line
(b)	$\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \frac{1}{\sinh^2 2x}}$	MI		use of formula; accept √ inserted at any stage
	$= \sqrt{\frac{\cosh^2 2x}{\sinh^2 2x}}$	m1		relevant use of $\cosh^2 - \sinh^2 = 1$
	$= \frac{\cosh 2x}{\sinh 2x}$	AI		OE
	Integral is $\frac{1}{2} \ln \sinh 2x$	MIAI		M1 for ln sinh
	$sinh(2 \ln 4) = \frac{255}{32}$ $sinh(2 \ln 2) = \frac{15}{8}$	BIBI		PI
	$s = \frac{1}{2} \ln \left(\frac{17}{4} \right)$	AIF	8	ft error in $\frac{1}{2}$
	Total		12	

1(a)	Sketch of $y = \cosh x$	BI	1	approximately correct with minimum point above the x-axis, symmetrical about y-axis
(b)	Attempt to factorise $(3\cosh x - 5)(2\cosh x + 1) = 0$	MI AI		or complete square or use (correct unsimplified) formula
	$\cosh x \neq -\frac{1}{2}$	El		indicated or stated (not merely neglected)
	$x = \ln\left(\frac{5}{3} + \sqrt{\frac{25}{9} - 1}\right)$ $= \pm \ln 3$	AIF AIF	6	evidence of use of formula. Must see -1 or equivalent ft incorrect factorisation A1 for ±
	Alternative: $3\left(\frac{e^x + e^{-x}}{2}\right) = 5$			
	$3e^{2x} - 10e^x + 3 = 0$	(M1)		
	$(3e^{x} - 1)(e^{x} - 3) = 0$ $x = \ln \frac{1}{3} \text{ or } \ln 3$	(AIF)		Correct factors for both
	NB if $\cosh x = \frac{e^x + e^{-x}}{2}$ used initially, M0 until quartic in e^x is factorised			M1 for e^x -3 is a factor A1 if correct M1 for $3e^x$ -1 is a factor A1 if correct A1 for x = \pm ln 3 E1 for showing remaining quadratic has no real roots
	Total		7	

6(a)	Use of $\cosh 2x = 2\cosh^2 x - 1$	MI		or $\cosh 4x = 2\cosh^2 2x - 1$
	$RHS = \frac{1}{2}\cosh 2x + \frac{1}{2}\cosh^2 2x$	A1		
	$=\frac{1}{4}(1+2\cosh 2x+\cosh 4x)$	Al	3	
	If substituted for both $\cosh 4x$ and $\cosh 2x$	1,54		
	in LHS M1 only, until corrected			
	If RHS is put in terms of e ^x			
	M1 for correct substitution			
	Al for correct expansion Al for correct result			
	At 101 correct result			allow A1 for
	$\frac{dy}{dx} = 2\cosh x \sinh x = \sinh 2x$			$1 + \left(\frac{dy}{dx}\right)^2 = 1 - 4\cosh^2 x + 4\cosh^4 x$
(b)	$\frac{1}{dx}$ = 2cosh x shin x = shin 2x	MIAI		(ut)
				Incorrect form for $\cosh^2 x$ in terms of
	Or			cosh 2x M1 only
	$y = \left(\frac{e^x + e^{-x}}{2}\right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4}$			
		(M1)		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{e}^{2x} - 2\mathrm{e}^{x}}{4}$	15-71		
	$= \sinh 2x$	(A1)		
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \sinh^2 2x = \cosh^2 2x$	Al	3	AG
	$\frac{1+\sqrt{dx}}{dx}$ = 1+ simi 2x = cosi 2x	Ai	,	Au
(c)	$S = 2\pi \int_{(0)}^{(\ln 2)} \cosh^2 x \cosh 2x dx$	MIAI		allow even if limits missing
(-)	397			
	$= 2\pi \int_0^{\ln 2} \frac{1}{4} (1 + 2\cosh 2x + \cosh 4x) dx$	mI		
	$=\frac{2\pi}{4}\left[x+\frac{2\sinh 2x}{2}+\frac{\sinh 4x}{4}\right]$	Al		Integrated correctly
	Correct use of limits	ml		
	a = 128, b = 495	AI,A1	7	accept correct answers written down wi
		44.		no working. Only one A1 if 2π not use
	m . 1		100	

			20.00 000000000000000000000000000000000
$\cosh x = \frac{1}{2} (e^{x} + e^{-x})$ $or \sinh x = \frac{1}{2} (e^{x} - e^{-x})$ $12 \cosh x - 4 \sinh x =$	M1		or $12\cosh x = 6(e^x + e^{-x})$ or $4\sinh x = 2(e^x - e^{-x})$
$6(e^{x} + e^{-x}) - 2(e^{x} - e^{-x})$ $12\cosh x - 4\sinh x = 4e^{x} + 8e^{-x}$	AI cso	2	AG
$4e^{x} + 8e^{-x} = 33$ $\Rightarrow 4e^{2x} - 33e^{x} + 8 (=0)$	MI		attempt to multiply by e ^x to form quadratic in e ^x
$\Rightarrow (e^x - 8)(4e^x - 1) (= 0)$	ml		factorisation attempt (see below) or correct use of formula
$\Rightarrow (e^x =)$ 8, $(e^x =)$ $\frac{1}{4}$	Al		correct roots
$(x=) 3 \ln 2$	AI		
(x=) -2ln2	AI	5	
	or $\sinh x = \frac{1}{2} (e^{x} - e^{-x})$ $12 \cosh x - 4 \sinh x =$ $6(e^{x} + e^{-x}) - 2(e^{x} - e^{-x})$ $12 \cosh x - 4 \sinh x = 4e^{x} + 8e^{-x}$ $4e^{x} + 8e^{-x} = 33$ $\Rightarrow 4e^{2x} - 33e^{x} + 8 (=0)$ $\Rightarrow (e^{x} - 8)(4e^{x} - 1) (=0)$ $\Rightarrow (e^{x} = 0) 8, (e^{x} = 0) \frac{1}{4}$ $(x = 0) 3 \ln 2$	or $\sinh x = \frac{1}{2}(e^{x} - e^{-x})$ M1 $12\cosh x - 4\sinh x =$ $6(e^{x} + e^{-x}) - 2(e^{x} - e^{-x})$ $12\cosh x - 4\sinh x = 4e^{x} + 8e^{-x}$ A1 cso $4e^{x} + 8e^{-x} = 33$ $\Rightarrow 4e^{2x} - 33e^{x} + 8 (=0)$ M1 $\Rightarrow (e^{x} - 8)(4e^{x} - 1) (=0)$ m1 $\Rightarrow (e^{x} = 8) (e^{x} = 1) (=0)$ A1 $(x = 1) (=0)$ A1 $(x = 1) (=0)$ A1 $(x = 1) (=0)$ A1	or $\sinh x = \frac{1}{2}(e^{x} - e^{-x})$ M1 $12\cosh x - 4\sinh x = 6(e^{x} + e^{-x}) - 2(e^{x} - e^{-x})$ $12\cosh x - 4\sinh x = 4e^{x} + 8e^{-x}$ A1 cso 2 $4e^{x} + 8e^{-x} = 33$ $\Rightarrow 4e^{2x} - 33e^{x} + 8 (=0)$ M1 $\Rightarrow (e^{x} - 8)(4e^{x} - 1) (=0)$ m1 $\Rightarrow (e^{x} = 8) (e^{x} = 1) (=0)$ A1 (x = 1) (x =

	Total		- 11	
	$\ln\left(\frac{3^3}{2^4}\right)$	Alcso	5	all working must be correct
Ш	Value of integral = $\ln 3 + 2 \ln \frac{3}{4}$	Al		any correct form
	$\tanh^{-1}\frac{1}{2} = \frac{1}{2}\ln 3$	Bl		must simplify logarithm to ln3
- 1	$4x \tanh^{-1} x + 2\ln(1-x^2)$	Al		
(c)	$\int 4 \tanh^{-1} x dx = 4x \tanh^{-1} x - \int \frac{4x}{1 - x^2} dx$	M1		
Ы				$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - x^2} \text{A1 cso}$
				43 2 (113) (1-3)
				$\frac{dy}{dx} = \frac{1}{2} \times \frac{(1-x)}{(1+x)} \times \frac{(1-x)+(1+x)}{(1-x)^2}$ A1
				$\frac{dy}{dx} = \frac{1}{2} \times \frac{(1-x)}{(1+x)} \times \frac{d}{dx} \left(\frac{1+x}{1-x}\right) M1$
				Alternative 1 $dv = 1 \cdot (1-r) \cdot d \cdot (1+r)$
	$= \frac{1 - x + 1 + x}{2(1 + x)(1 - x)} = \frac{2}{2(1 - x^2)} = \frac{1}{1 - x^2}$	Alcso	3	
	-11.	61303		AG
	$\frac{dy}{dx} = \frac{1}{2(1+x)} + \frac{1}{2(1-x)}$	A1		
(b)	$y = \frac{1}{2}\ln(1+x) - \frac{1}{2}\ln(1-x)$	M1		
	1, 1,	2.0		
	$e^{-x} = \frac{1-x}{1-x} \Rightarrow y = \frac{1}{2} \ln \left(\frac{1-x}{1-x} \right)$	Alcso	3	AG
	$e^{2y} = \frac{1+x}{1-x} \Rightarrow y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	6.53	2	10
	$\Rightarrow (x+1)e^{-y} = e^{y}(1-x)$ $\Rightarrow (x+1) = e^{2y}(1-x)$	Al		
	246 246 246	1.723		11 / 11 / 12 / 12 / 12 / 12 / 12 / 12 /
	$e^{y} + e^{-y}$ $xe^{y} + xe^{-y} = e^{y} - e^{-y}$	MI		or $xe^{2y} + x = e^{2y} - 1$
5(a)	$x = \tanh y = \frac{e^y - e^{-y}}{e^y + e^{-y}}$			

х	DOLLAND			Comments
2(a)(i)	sinh x graph			
		MI		shape - curve through O, in 1st and 3 rd quadrants
	cosh x graph			
		MI		shape - curve all above x-axis
	Gradient of $\sinh x > 0$ at origin and $\cosh x$ minimum at $(0,1)$	AI	3	
(ii)	$ \cosh x = 0 \text{ has } no \text{ solutions} $			or $\cosh x > 0$ etc
	and $\sinh x = -k$ has one solution (hence equation has exactly one solution)	El	(1.)	(since $y = -k$ cuts $y = \sinh x$ exactly once
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cosh x + 2\cosh x \sinh x$	M1 A1		one term correct all correct - may have $6\cosh x + \sinh 2x$
	$(2)\cosh x(3+\sinh x) = 0$ therefore C has only one stationary point.	El√		putting = 0, factorising and concluding statement (may be late)
	$\Rightarrow \sinh x = -3$	ml		finding sinh x from "their" equation
	$\cosh^2 x = 10$			
	y = -18 + 10 = -8	Al	5	answer must be integer so do not accept calculator approximation rounded to -8
	Total		9	

Q	Solution	Marks	Total	Comments
6(a)	$(5\cosh x - 3\sinh x)$			
	$= \frac{5}{2} \left(e^{x} + e^{-x} \right) - \frac{3}{2} \left(e^{x} - e^{-x} \right)$	Ml		$\cosh x$ and $\sinh x$ correct in terms of e^x
	$= e^x + 4e^{-x}$	Al		may be seen as denominator
	$\frac{1}{5\cosh x - 3\sinh x} = \frac{e^x}{4 + e^{2x}}$	Alcso	3	** must have left hand-side; $m = 4$
(b)	$u = e^x \Rightarrow du = e^x dx$	MI		or $\frac{du}{dx} = e^x$
	$\Rightarrow \int \frac{1}{4+u^2} (\mathrm{d}u)$	Al√		FT "their" m from part(a) $\Rightarrow \int \frac{1}{m+u^2} dx$
	$= \frac{1}{2} \tan^{-1} \frac{u}{2}$	Al√		FT "their" $\frac{1}{\sqrt{m}} \tan^{-1} \frac{u}{\sqrt{m}}$
	$x = 0 \Rightarrow u = 1$ $x = \ln 2 \Rightarrow u = 2$			
	$\frac{1}{2} \tan^{-1} 1 - \frac{1}{2} \tan^{-1} \frac{1}{2}$	Al√		FT "their" $\frac{1}{\sqrt{m}} \left(\tan^{-1} \frac{2}{\sqrt{m}} - \tan^{-1} \frac{1}{\sqrt{m}} \right)$
	$= \frac{\pi}{8} - \frac{1}{2} \tan^{-1} \frac{1}{2}$	Alcso	5	AG
	Total		8	

7(a)(i)	$\frac{d}{du} \left(2u\sqrt{1 + 4u^2} \right) = \frac{8u^2}{\sqrt{1 + 4u^2}} + 2\sqrt{1 + 4u^2}$	MI Al		M1 for clear use of product rule (condone one error in one term) correct unsimplified
	$\frac{\mathrm{d}}{\mathrm{d}u}\left(\sinh^{-1}2u\right) = \frac{2}{\sqrt{1+4u^2}}$	BI		- Control and an analysis of the control and an analysis of th
	$\frac{8u^2 + 2}{\sqrt{1 + 4u^2}} = \frac{2(1 + 4u^2)}{\sqrt{1 + 4u^2}} = 2\sqrt{1 + 4u^2}$			be convinced – must see this line OE
	$\frac{d}{du} \left(2u\sqrt{1 + 4u^2} + 4\sinh^{-1} 2u \right) = 4\sqrt{1 + 4u^2}$	Alcso	4	all working must be correct (not enoug to just say $k = 4$)
(ii)	$\frac{1}{\text{"their"}k} \left[2u\sqrt{1+4u^2} + \sinh^{-1} 2u \right]_0^1$	MI		anti differentiation
	$= \frac{\sqrt{5}}{2} + \frac{1}{4} \sinh^{-1} 2$	Al✓	2	FT "their" k or even use of k
(b)(i)	$y = \frac{1}{2}\cos 4x$ and $\frac{dy}{dx} = A\sin 4x$			$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\sin 4x$
	substituted into $\int K y \left(1 + \left(\frac{dy}{dx}\right)^2\right) (dx)$	MI		clear attempt to use formula for CSA
	$(S =) \int_{0}^{\frac{\pi}{8}} 2\pi \times \frac{1}{2} \cos 4x \sqrt{1 + 4 \sin^2 4x} dx$ = printed answer (combining $2 \times \frac{1}{2}$)	Alcso	2	AG $\frac{dy}{dx} = -2\sin 4x$ and $2 \times \frac{1}{2}$ and d must be seen to award Alcso
(ii)	$u = \sin 4x \Rightarrow du = 4\cos 4x dx$	MI		condone $du = B\cos 4x dx$ for M1
	$(S=) \frac{\pi}{4} \int_0^1 \sqrt{1+4u^2} \left(du \right)$	Al		condone limits seen later
		mI		use of their result from (a)(ii) correctly FT "their" B
	$(S =) \frac{\pi\sqrt{5}}{8} + \frac{\pi}{16} \sinh^{-1} 2$	Alcso	4	

Q	Solution	Mark	Total	Comment
5(a)	$(e^{\theta} - e^{-\theta})^3 = e^{3\theta} - 3e^{\theta} + 3e^{-\theta} - e^{-3\theta}$ OE	B1		correct expansion; terms need not be combined
	$4\sinh^{3}\theta + 3\sinh\theta = \frac{4}{8}(e^{3\theta} - 3e^{\theta} + 3e^{-\theta} - e^{-3\theta}) + \frac{1}{2}(3e^{\theta} - 3e^{-\theta})$. М1		correct expression for $\sinh \theta$ and attempt to expand $(e^{\theta} - e^{-\theta})^3$
	$= \frac{1}{2} \left(e^{3\theta} - e^{-3\theta} \right) = \sinh 3\theta$	A1	3	AG identity proved
(b)	$16\sinh^{3}\theta + 12\sinh\theta - 3 = 0$ $\Rightarrow 4\sinh3\theta - 3 = 0$	M1		attempt to use previous result
	$ sinh 3\theta = \frac{3}{4} $	A1		
	$(3\theta =) \ln \left(\frac{3}{4} + \sqrt{\frac{9}{16} + 1} \right)$	m1		correct In form of \sinh^{-1} for "their" $\frac{3}{4}$
	$\theta = \frac{1}{3} \ln 2$	A1	4	
(c)	$x = \sinh \theta = \frac{1}{2} \left(2^{\frac{1}{3}} - 2^{-\frac{1}{3}} \right)$	М1		correctly substituting their expression for θ into $\sinh \theta$ removing any $\ln \theta$ terms
	$2^{-\frac{2}{3}} - 2^{-\frac{4}{3}}$	A1	2	
	Total		9	

Q2	Solution	Mark	Total	Comment
(a)	y 1 x			
	Graph roughly correct through O	M1	Ш,	condone infinite gradient at O for M1
	Correct behaviour as $x \to \pm \infty$ & grad at O	A1		
	Asymptotes have equations $y = 1 & y = -1$	B1	3	must state equations
(b)	sech $x = \frac{2}{e^x + e^{-x}}$; $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	BI		both correct ACF or correct squares of these expressions seen
	$(\operatorname{sech}^{2} x + \tanh^{2} x =) \frac{2^{2} + \left(e^{x} - e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}}$	MI		attempt to combine their squared terms with correct single denominator
	$\operatorname{sech}^2 x + \tanh^2 x = \frac{e^{2x} + 2 + e^{-2x}}{e^{2x} + 2 + e^{-2x}} = 1$	Al	3	AG valid proof convincingly shown to equal 1 including LHS seen
(c)	$6(1-\tanh^2 x) = 4 + \tanh x$	B1		correct use of identity from part (b)
	$6\tanh^2 x + \tanh x - 2 (=0)$	M1		forming quadratic in tanh x
	$\tanh x = \frac{1}{2} , \tanh x = -\frac{2}{3}$	A1		obtained from correct quadratic
	$\tanh x = k \Rightarrow x = \frac{1}{2} \ln \left(\frac{1+k}{1-k} \right)$	A1F	100	FT a value of k provided $ k < 1$
	$x = \frac{1}{2} \ln 3$, $x = \frac{1}{2} \ln \frac{1}{5}$	A1	5	both solutions correct and no others any equivalent form involving ln
	Total		11	

Q3	Solution	Mark	Total	Comment
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{(1-x^2)}$	B1		
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{(2x)^2}{(1 - x^2)^2}$	MI		FT their $\frac{dy}{dx}$
	$\frac{1 - 2x^2 + x^4 + 4x^2}{(1 - x^2)^2} = \frac{(1 + x^2)^2}{(1 - x^2)^2}$ $s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	m1		Allow m1 if sign error in $\frac{dy}{dx}$
	$s = \int \sqrt{1 + \left(\frac{1}{dx}\right)} dx$ $s = \int_0^{\frac{3}{4}} \left(\frac{1 + x^2}{1 - x^2}\right) dx$	Alcso	4	AG must have dx and limits on final lin
(b)	$\frac{1+x^2}{1-x^2} = \frac{A}{1-x^2} + B$	MI		and attempt to find constants $B \neq 0$
	$\frac{1+x^2}{1-x^2} = \frac{2}{1-x^2} - 1$	AI		
	$\left(\frac{A}{2}\ln\left(\frac{1+x}{1-x}\right) \text{ or } A \tanh^{-1} x\right) + Bx$	m1		FT integral of their $\frac{A}{1-x^2} + B$
	$\ln\left(\frac{1+x}{1-x}\right) - x$	AI		or $2 \tanh^{-1} x - x$ correct
	$\ln\left(\frac{1+\frac{3}{4}}{1-\frac{3}{4}}\right) - \frac{3}{4} \mathbf{OE}$	A1	. 4	PI by next A1 or $(s =) 2 \tanh^{-1} \left(\frac{3}{4}\right)$
	$-\frac{3}{4} + \ln 7$ Alternative	A1	6	or $(s) = \ln 7 - \frac{3}{4}$
	$\frac{1+x^2}{1-x^2} = \frac{C}{1+x} + \frac{D}{1-x} + E$	(M1)		and attempt to find constants $E \neq 0$
	$\frac{1+x^2}{1-x^2} = \frac{1}{1+x} + \frac{1}{1-x} - 1$	(A1)		
	$C\ln(1+x) - D\ln(1-x) + Ex$	(m1)		FT integral of their $\frac{C}{1+x} + \frac{D}{1-x} + E$
	$= \ln(1+x) - \ln(1-x) - x$	(A1)		correct 1+x 1-x
	$(s =) \ln \frac{7}{4} - \ln \frac{1}{4} - \frac{3}{4}$ OE	(A1)		correct unsimplified
	$(s) = \ln 7 - \frac{3}{4}$	(A1)	(6)	
	Total		10	

	Solution	Mark	Total	Comment
	$y = \frac{1}{2} (e^x - e^{-x})$ $\Rightarrow e^{2x} - 2ye^x - 1 (=0)$ $(e^x =) \frac{2y \pm \sqrt{4y^2 + 4}}{2}$ $e^x > 0 \text{so reject negative root}$ $e^x = y + \sqrt{y^2 + 1} \Rightarrow x = \ln(y + \sqrt{y^2 + 1})$	MI AI EI AI	4	allow $e^{2x} - 2ye^x = 1$ for M1 if attempting to complete square terms all on one side or $e^x - y = \pm \sqrt{y^2 + 1}$ after completing square any correct explanation for rejection AG must earn previous A1
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6 \times 2\cosh x \sinh x \qquad \text{(not } 6\sinh 2x\text{)}$	B1 B1		directly or via $3\cosh 2x + 3$
	$+5 \cosh x$ $\cosh x = 0$ gives no solution	E1		Not simply cancelling cosh x
	(only stationary point when) $ sinh x = -\frac{5}{12} $ $ x = \ln\left(-\frac{5}{12} + \sqrt{1 + \frac{25}{144}}\right) $	M1		FT "their" $\sinh x$ from equation of form $A \cosh x \sinh x + B \cosh x$ or M1 for using exponentials obtaining $e^x = \frac{2}{3}$ or $-\frac{3}{2}$ OE
	$=\ln\left(\frac{2}{3}\right)$	AI	5	accept $\ln\left(\frac{8}{12}\right)$ OE
(ii)	$Area = \int_0^{\cosh^{-1} 2} \left(6\cosh^2 x + 5\sinh x \right) dx$			
	$6\cosh^2 x = 3 + 3\cosh 2x$	BI		or $6\cosh^2 x = \frac{3}{2} (e^{2x} + 2 + e^{-2x})$
	$Ax+B\sinh 2x$ or $Cx+D(e^{2x}-e^{-2x})$	M1		correct FT "their" $\int 6\cosh^2 x dx$
	$3x + \frac{3}{2}\sinh 2x + 5\cosh x$	A1		integration all correct (may be in ex form
	$3\cosh^{-1}2 + \frac{3}{2}\sinh(2\cosh^{-1}2) + 10 - 5$	m1	5	F(cosh ⁻¹ 2) – F(0) correct substitution of limits into their expression