FP2 Arc length and area of surface of revolution

- 5 (a) Use the definition $\cosh x = \frac{1}{2}(e^x + e^{-x})$ to show that $\cosh 2x = 2\cosh^2 x 1$.
 - (b) (i) The arc of the curve $y = \cosh x$ between x = 0 and $x = \ln a$ is rotated through 2π radians about the x-axis. Show that S, the surface area generated, is given by

$$S = 2\pi \int_0^{\ln a} \cosh^2 x \, dx \qquad (3 \text{ marks})$$

(ii) Hence show that

$$S = \pi \left(\ln a + \frac{a^4 - 1}{4a^2} \right) \tag{5 marks}$$

7 The diagram shows a curve which starts from the point A with coordinates (0, 2). The curve is such that, at every point P on the curve,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x$$

where s is the length of the arc AP:

(a) (i) Show that

$$\frac{ds}{dv} = \frac{1}{2}\sqrt{4 + x^2} \tag{3 marks}$$

(ii) Hence show that

$$s = 2\sinh\frac{x}{2} \tag{4 marks}$$

(iii) Hence find the cartesian equation of the curve-

(b) Show that

$$y^2 = 4 + s^2 (2 marks)$$

5 (a) Using the identities

$$\cosh^2 t - \sinh^2 t = 1$$
, $\tanh t = \frac{\sinh t}{\cosh t}$ and $\operatorname{sech} t = \frac{1}{\cosh t}$

show that:

(i)
$$\tanh^2 t + \operatorname{sech}^2 t = 1$$
; (2 marks)

(ii)
$$\frac{d}{dt}(\tanh t) = \operatorname{sech}^2 t$$
; (3 marks)

(iii)
$$\frac{d}{dt}(\operatorname{sech} t) = -\operatorname{sech} t \tanh t$$
. (3 marks)

(b) A curve C is given parametrically by

$$x = \operatorname{sech} t$$
, $y = 4 - \tanh t$

(i) Show that the arc length, s, of C between the points where t = 0 and $t = \frac{1}{2} \ln 3$ is given by

$$s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t \, \mathrm{d}t \tag{4 marks}$$

(ii) Using the substitution $u = e^t$, find the exact value of s. (6 marks)

6 (a) Given that

$$x = \ln(\sec t + \tan t) - \sin t$$

show that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin t \tan t \tag{4 marks}$$

(b) A curve is given parametrically by the equations

$$x = \ln(\sec t + \tan t) - \sin t$$
, $y = \cos t$

The length of the arc of the curve between the points where t = 0 and $t = \frac{\pi}{3}$ is denoted by s.

Show that $s = \ln p$, where p is an integer. (6 marks)

5 (a) The arc of the curve $y^2 = x^2 + 8$ between the points where x = 0 and x = 6 is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$S = 2\sqrt{2}\pi \int_0^6 \sqrt{x^2 + 4} \, dx$$
 (5 marks)

(b) By means of the substitution $x = 2 \sinh \theta$, show that

$$S = \pi (24\sqrt{5} + 4\sqrt{2}\sinh^{-1}3)$$
 (8 marks)

6 (a) Show that

$$\frac{1}{4}(\cosh 4x + 2\cosh 2x + 1) = \cosh^2 x \cosh 2x \qquad (3 \text{ marks})$$

(b) Show that, if $y = \cosh^2 x$, then

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cosh^2 2x \tag{3 marks}$$

(c) The arc of the curve $y = \cosh^2 x$ between the points where x = 0 and $x = \ln 2$ is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$S = \frac{\pi}{256} \left(a \ln 2 + b \right)$$

where a and b are integers.

(7 marks)

6 A curve is defined parametrically by

$$x = t^3 + 5$$
, $v = 6t^2 - 1$

The arc length between the points where t = 0 and t = 3 on the curve is s.

(a) Show that
$$s = \int_0^3 3t \sqrt{t^2 + A} \, dt$$
, stating the value of the constant A. (4 marks)

(b) Hence show that
$$s = 61$$
. (4 marks)

7 (a) (i) Show that

$$\frac{d}{du} \left(2u\sqrt{1 + 4u^2} + \sinh^{-1} 2u \right) = k\sqrt{1 + 4u^2}$$

where k is an integer.

(4 marks)

(ii) Hence show that

$$\int_0^1 \sqrt{1 + 4u^2} \, du = p\sqrt{5} + q \sinh^{-1} 2$$

where p and q are rational numbers.

(2 marks)

- (b) The arc of the curve with equation $y = \frac{1}{2}\cos 4x$ between the points where x = 0 and $x = \frac{\pi}{8}$ is rotated through 2π radians about the x-axis.
 - (i) Show that the area S of the curved surface formed is given by

$$S = \pi \int_0^{\frac{\pi}{8}} \cos 4x \sqrt{1 + 4\sin^2 4x} \, dx \qquad (2 \text{ marks})$$

(ii) Use the substitution $u = \sin 4x$ to find the exact value of S. (4 marks)

3 A curve C is defined parametrically by

$$x = \frac{t^2 + 1}{t}, \quad y = 2\ln t$$

(a) Show that $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \left(1 + \frac{1}{t^2}\right)^2$.

[4 marks]

(b) The arc of C from t=1 to t=2 is rotated through 2π radians about the x-axis. Find the area of the surface generated, giving your answer in the form $\pi(m \ln 2 + n)$, where m and n are integers.

[5 marks]

- A curve has equation $y = 2\sqrt{x-1}$, where x > 1. The length of the arc of the curve between the points on the curve where x = 2 and x = 9 is denoted by s.
 - (a) Show that $s = \int_2^9 \sqrt{\frac{x}{x-1}} \, dx$.

[3 marks]

(b) (i) Show that $\cosh^{-1} 3 = 2 \ln(1 + \sqrt{2})$.

[2 marks]

(ii) Use the substitution $x = \cosh^2 \theta$ to show that

$$s = m\sqrt{2} + \ln(1 + \sqrt{2})$$

where m is an integer.

[6 marks]

- 3 The arc of the curve with equation $y = 4 \ln(1 x^2)$ from x = 0 to $x = \frac{3}{4}$ has length x.
 - (a) Show that $s = \int_0^{\frac{3}{4}} \left(\frac{1+x^2}{1-x^2} \right) dx$.

[4 marks]

(b) Find the value of s, giving your answer in the form $p + \ln N$, where p is a rational number and N is an integer.

[6 marks]

				Commence
5(a)	$(e^x + e^{-x})^2$ expanded correctly	B1		$e^{2x} + 2e^0 + e^{-2x}$ is acceptable
	Result	B1	2	AG
(b)(i)	$\frac{dy}{dx} = \sinh x$ $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \sinh^2 x}$	B1		
	$= \cosh x$	M1		use of $\cosh^2 x - \sinh^2 x = 1$
	$S = 2\pi \int_{0}^{\ln a} \cosh^{2} x dx$	A1	3	AG (clearly derived)
(ii)	Use of $\cosh^2 x = \frac{1}{2} (1 + \cosh 2x)$	М1		allow one slip in formula M0 if $\int \cosh^2 x dx$ is given as $\sinh^2 x$
	$S = \pi \left[x + \frac{1}{2} \sinh 2x \right]_0^{\ln a}$	A1		
	$=\pi \left[\ln a + \frac{1}{2} \left(\frac{e^{2\ln a} - e^{-2\ln a}}{2} \right) \right]$	М1		
	$=\pi \left[\ln a + \frac{1}{4}(a^2 - a^{-2})\right]$	A1F		
	$=\pi \left[\ln a + \frac{1}{4a^2}(a^4 - 1)\right]$	A1	5	AG
	Total		10	

7(a)(i)	$\frac{\mathrm{d}s}{\mathrm{d}x} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \left(\frac{s}{2}\right)^2}$	M1A1		Allow M1 for $s = \int \sqrt{1 + \left(\frac{s}{2}\right)^2} dx$
				then A1 for $\frac{dy}{dx}$
	$=\frac{1}{2}\sqrt{4+s^2}$	A1	3	AG
	$\int \frac{\mathrm{d}s}{\sqrt{4+s^2}} = \int \frac{1}{2} \mathrm{d}x$	М1		For separation of variables; allow withountegral sign
	$\sinh^{-1}\frac{s}{2} = \frac{1}{2}x + C$	A1		Allow if C is missing
	C=0	A1		
	$s = 2\sinh\frac{1}{2}x$			AG if C not mentioned allow $\frac{3}{4}$
	-			SC incomplete proof of (a)(ii),
		A1	4	differentiating
				$s = 2 \sinh \frac{x}{2}$ to arrive at $\frac{ds}{dx} = \frac{1}{2} \sqrt{4 + s^2}$
				allow M1A1 only $\binom{2}{4}$
(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh\frac{1}{2}x$	М1		
	$y = 2\cosh\frac{1}{2}x + C$	A1		Allow if C is missing
	C = 0	A1	3	Must be shown to be zero and CAO
(b)	$y^2 = 4\left(1 + \sinh^2\frac{x}{2}\right)$	M1		Use of $\cosh^2 = 1 + \sinh^2$
	$=4+s^2$	A1	2	AG
	Tota	al	12	

	Total		18	
-11	$=\frac{2\pi}{3} - \frac{2\pi}{4} = \frac{\pi}{6}$	Al	6	CAO
	Change limits correctly or change back to t	ml		At some stage
	[2 tan-1u]	Al		Or 2tan ⁻¹ e ^t
	$\int \operatorname{sech} t \mathrm{d}t = \int \frac{2}{u^2 + 1} \mathrm{d}u$	MIAI		CAO M1 for putting integrand in terms of u (no sech (ln u))
(ii)	$u = e^t$ $du = e^t dt$	В1		
	$\therefore s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t dt$	A1	4	AG (including limits)
	$= \operatorname{sech}^2 t$	Al		2000
	Use of $\tanh^2 t + \operatorname{sech}^2 t = 1$	ml		Correct formula only for m1
(b)(i)	$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \operatorname{sech}^4 t + \operatorname{sech}^2 t \tanh^2 t$	MI		Allow slips of sign before squaring for this M1
	= $-$ sech t tanh t	A1	3	AG
(iii)	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{sech}t) = -(\cosh t)^{-2} \sinh t$	MIA1		Allow A1 if negative sign missing
	$= \operatorname{sech}^2 t$	Al	3	AG
(ii)	$\frac{d}{dt} \left(\frac{\sinh t}{\cosh t} \right) = \frac{\cosh^2 t - \sinh^2 t}{\cosh^2 t}$	MIAI		
	Rearrange	Al	2	AG If solved back to front with no conclusion ending $\cosh^2 t - \sinh^2 t = 1$ B1 only
6(a)(i)	Divide $\cosh^2 t - \sinh^2 t = 1$ by $\cosh^2 t$	M1		$Or \frac{\sinh^2 t}{\cosh^2 t} + \frac{1}{\cosh^2 t}$

	A.:			use of FB for sect;
6(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sec t - \cos t$	B1,B1		if done from first principles, allow B1 when sect is arrived at
- 1	Use of $1 - \cos^2 t = \sin^2 t$	MI		
١	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin t \tan t$	Al	4	AG
(b)	$\dot{x}^2 + \dot{y}^2 = \sin^2 t \tan^2 t + \sin^2 t$	MIAI		sign error in $\frac{dy}{dt}$ A0
	Use of $1 + \tan^2 t = \sec^2 t$	mI		
	$\sqrt{\dot{x}^2 + \dot{y}^2} = \tan t$	AlF		ft sign error in $\frac{dy}{dt}$
П	$\int_0^{\frac{\pi}{3}} \tan t dt = \left[\ln \sec t \right]_0^{\frac{\pi}{3}}$	AlF		ft sign error in $\frac{dy}{dt}$
-11	=ln 2	Al	6	CAO
	1	otal	10	

BI		Or $\frac{dy}{dx} = x(x^2 + 8)^{-\frac{1}{2}}$
		dr
MI AIF		M1 for use of formula provided $\frac{dy}{dx}$ is a function of x
14		A1 for substitution for $\frac{dy}{dx}$ (one slip)
ml		
AI	5	AG
BI		
Ml		For eliminating x completely and use of $d\theta$, ie $d\theta$ attempted
ml		Use of $\cosh^2 \theta - \sinh^2 \theta = 1$ (ignore limits)
ml		Use of formula for $\cosh 2\theta$; must be correct
BIF		Correct integration of $a \cosh 2\theta + b$
ml		Use of $\sinh 2\theta = 2\sinh \theta \cosh \theta$
1.0		Must be seen
MI		Or change limits
Al	8	AG
	13	45
MIA	A1 :	2
	mI AI BI MI mI BIF mI AI	mI

6(a) $7+4x-2x^2=9-2(x-1)^2$	MIAI	2	
(b) Put $u = \sqrt{2}(x-1)$	MI		allow $u = k(x-1)$ any k
$du = \sqrt{2} dx$	AlF		
$I = \frac{1}{\sqrt{2}} \int \frac{du}{\sqrt{9 - u^2}}$	AlF		ft error in (a); must have u^2 only, ie $\frac{1}{\sqrt{2}}$ outside integrand
$=\frac{1}{\sqrt{2}}\sin^{-1}\frac{u}{3}$	Al		for $\sin^{-1}\frac{u}{p}$
Change limits or replace u	ml		provided sin-t
$=\frac{\pi}{4\sqrt{2}} \text{ or } \frac{\pi\sqrt{2}}{8}$	Al	6	CAO
Alternative – if integration is attempted without substitution:			
sin ⁻¹	(M1)		
$\frac{1}{\sqrt{2}}$	(A1F)		
(x-1)	(A1)		
$\frac{(x-1)}{\sqrt{2}}$	(A1F)		
Substitution of limits	(ml)		
$\frac{\pi}{4\sqrt{2}}$	(A1)	(6)	CAO
Total		R	

6(a)	Use of $\cosh 2x = 2\cosh^2 x - 1$	Mi		or $\cosh 4x = 2\cosh^2 2x - 1$
	$RHS = \frac{1}{2}\cosh 2x + \frac{1}{2}\cosh^2 2x$	A1		
	$=\frac{1}{4}(1+2\cosh 2x+\cosh 4x)$	Al	3	
	If substituted for both $\cosh 4x$ and $\cosh 2x$			
	in LHS M1 only, until corrected			
	If RHS is put in terms of ex			
	M1 for correct substitution			
	A1 for correct expansion			
	A1 for correct result			A - 19 4
				allow Al for
	$\frac{dy}{dx} = 2\cosh x \sinh x = \sinh 2x$			$1 + \left(\frac{dy}{dx}\right)^2 = 1 - 4\cosh^2 x + 4\cosh^4 x$
(b)	dx	MIAI		()
				Incorrect form for $\cosh^2 x$ in terms of
	Or			cosh 2x MI only
	$y = \left(\frac{e^x + e^{-x}}{2}\right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4}$			
		(M1)		
	$\frac{dy}{dx} = \frac{2e^{2x} - 2e^x}{4}$	(WII)		
	un -	220		
	$= \sinh 2x$	(A1)		
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \sinh^2 2x = \cosh^2 2x$	AI	3	AG
	(dr)	77		
(e)	$S = 2\pi \int_{(0)}^{(\ln 2)} \cosh^2 x \cosh 2x dx$	MIAI		allow even if limits missing
(5)	J(0)			anow even is initial massing
	$= 2\pi \int_0^{\ln 2} \frac{1}{4} (1 + 2\cosh 2x + \cosh 4x) dx$	mI		
	$2\pi \begin{bmatrix} 2\sinh 2x & \sinh 4x \end{bmatrix}$	1.5		1-1-2
	$= \frac{2\pi}{4} \left[x + \frac{2\sinh 2x}{2} + \frac{\sinh 4x}{4} \right]$	Al		Integrated correctly
	Correct use of limits	mI		
	a = 128, $b = 495$	AI,AI	7	accept correct answers written down with no working. Only one A1 if 2π not used
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3t^2 \frac{\mathrm{d}y}{\mathrm{d}t} = 12t$	BI		both correct
	$\frac{dx}{dt} = 3t^2 \frac{dy}{dt} = 12t$ $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 9t^4 + 144t^2$ $s = \int \sqrt{9t^4 + 144t^2} (dt)$ $s = \int_0^3 3t \sqrt{t^2 + 16} dt$	Ml		'their' $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$
	$s = \int \sqrt{9t^4 + 144t^2} (dt)$	A1		ŌE
	$s = \int_0^3 3t \sqrt{t^2 + 16} \mathrm{d}t$	Aleso	4	A = 16
(b)	$k(t^2+A)^{\frac{3}{2}}$	Ml		where k is a constant; ft their A
	$(t^2+16)^{\frac{3}{2}}$	Al		
	$(t^2 + 16)^{\frac{3}{2}}$ $25^{\frac{3}{2}} - 16^{\frac{3}{2}}$	ml	2.1	F(3) - F(0)
	= 61	Al cso	4	AG
	Total		8	

	Total		12	
	$(S =) \frac{\pi\sqrt{5}}{8} + \frac{\pi}{16}\sinh^{-1}2$	Aleso	4	OE
		ml		use of their result from (a)(ii) correctly FT "their" B
	$(S =) \frac{\pi}{4} \int_0^1 \sqrt{1 + 4u^2} (du)$	Al		condone limits seen later
(ii)	$u = \sin 4x \Rightarrow du = 4\cos 4x dx$	MI		condone $du = B\cos 4x dx$ for M1
	= printed answer (combining $2 \times \frac{1}{2}$)			must be seen to award Alcso
	$(S =) \int_{0}^{\frac{\pi}{8}} 2\pi \times \frac{1}{2} \cos 4x \sqrt{1 + 4 \sin^2 4x} dx$	Alcso	2	AG $\frac{\mathrm{d}y}{\mathrm{d}x} = -2\sin 4x$ and $2 \times \frac{1}{2}$ and d
	substituted into $\int K y \left(1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right) (\mathrm{d}x)$	MI		clear attempt to use formula for CSA
(b)(i)	$y = \frac{1}{2}\cos 4x$ and $\frac{dy}{dx} = A\sin 4x$			$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\sin 4x$
	$= \frac{\sqrt{5}}{2} + \frac{1}{4} \sinh^{-1} 2$	Al	2	FT "their" k or even use of k
(ii)	$\frac{1}{\text{"their"}k} \left[2u\sqrt{1 + 4u^2} + \sinh^{-1} 2u \right]_0^1$	МІ		anti differentiation
	$\frac{d}{du} \left(2u\sqrt{1 + 4u^2} + 4\sinh^{-1} 2u \right) = 4\sqrt{1 + 4u^2}$	Alcso	4	all working must be correct (not enouge to just say $k = 4$)
	$\frac{8u^2 + 2}{\sqrt{1 + 4u^2}} = \frac{2(1 + 4u^2)}{\sqrt{1 + 4u^2}} = 2\sqrt{1 + 4u^2}$			be convinced – must see this line OE
	$\frac{\mathrm{d}}{\mathrm{d}u}\left(\sinh^{-1}2u\right) = \frac{2}{\sqrt{1+4u^2}}$	ВІ		
	y 1.74	Al		correct unsimplified
	$\frac{d}{du}\left(2u\sqrt{1+4u^2}\right) = \frac{8u^2}{\sqrt{1+4u^2}} + 2\sqrt{1+4u^2}$	MI		M1 for clear use of product rule (condone one error in one term)

8(a)	$y = 2(x-1)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = (x-1)^{-\frac{1}{2}}$	B1		
	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{1}{x - 1}$	M1		ft their $\frac{dy}{dx}$
	$(s =) \int_{(2)}^{(9)} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} (dx)$ (=)			$s = \int_{2}^{9} \sqrt{1 + \frac{1}{x - 1}} dx$
	$\int_{2}^{9} \sqrt{\frac{x}{x-1}} \mathrm{d}x$	A1	3	(be convinced) AG (must have limits & dx on final line)
(b)(i)	$\cosh^{-1} 3 = \ln\left(3 + \sqrt{8}\right)$	M1		
	$(1+\sqrt{2})^2 = 3+2\sqrt{2} = 3+\sqrt{8}$			need to see this line OE
	$ \cosh^{-1} 3 = \ln \left(1 + \sqrt{2} \right)^2 = 2 \ln \left(1 + \sqrt{2} \right) $	A1	2	AG (be convinced)
(ii)	$x = \cosh^2 \theta \Rightarrow dx = 2 \cosh \theta \sinh \theta d\theta$	M1		$\frac{\mathrm{d}x}{\mathrm{d}\theta} = k \cosh\theta \sinh\theta \text{ OE}$
	$(s =) \int \frac{\cosh \theta}{\sinh \theta} 2 \cosh \theta \sinh \theta d\theta$	A1		including $d\theta$ on this or later line
	$2\cosh^2\theta = 1 + \cosh 2\theta \mathbf{OE}$	В1		double angle formula or $\frac{1}{2} (e^{2\theta} + 2 + e^{-2\theta})$
	$(s=) \theta + \frac{1}{2}\sinh 2\theta$	A1		or $\left(\frac{1}{4}e^{2\theta} + \theta - \frac{1}{4}e^{-2\theta}\right)$
	$\cosh^{-1} 3 + \frac{1}{2} \sinh(2 \cosh^{-1} 3)$	m1		correct use of correct limits
	$-\cosh^{-1}\sqrt{2} - \frac{1}{2}\sinh(2\cosh^{-1}\sqrt{2})$ $(s = 2\ln(1+\sqrt{2}) - \ln(1+\sqrt{2}) + 6\sqrt{2} - \sqrt{2}$			must see this line OE
	$=5\sqrt{2}+\ln\left(1+\sqrt{2}\right)$	A1	6	partial AG (be convinced)

Q3	Solution	Mark	Total	Comment
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \frac{1}{t^2}$	B1		OE eg $\frac{t(2t) - (t^2 + 1)}{t^2}$ ACF
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2}{t}$	В1		
	$\left(\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 = \right) 1 - \frac{2}{t^2} + \frac{1}{t^4} + \frac{4}{t^2}$ $1 + \frac{2}{t^2} + \frac{1}{t^4} \qquad = \left(1 + \frac{1}{t^2} \right)^2$	MI		squaring and adding their expressions and attempting to multiply out
		Al	4	AG be convinced
(b)	$2\pi \int_{1}^{2} \left(2\ln t\right) \left(1 + \frac{1}{t^{2}}\right) \mathrm{d}t$	В1		must have 2π , limits and dt
		M1		integration by parts - clear attempt to integrate $1 + \frac{1}{t^2}$ and differentiate $2 \ln t$
	$(2\pi)\left\{(2\ln t)\left(t-\frac{1}{t}\right)-\int \frac{2}{t}\left(t-\frac{1}{t}\right)(\mathrm{d}t)\right\}$	A1		correct (may omit limits, 2π and dt)
	$(2\pi) \left\{ (2\ln t) \left(t - \frac{1}{t} \right) - \int \frac{2}{t} \left(t - \frac{1}{t} \right) (\mathrm{d}t) \right\}$ $2\pi \left[(2\ln t) \left(t - \frac{1}{t} \right) - \left(2t + \frac{2}{t} \right) \right]$	Al		correct including 2π (no limits required)
	$= 2\pi(3\ln 2 - 5 + 4)$ = $\pi(6\ln 2 - 2)$	A1	5	
	Total		9	