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3b

5 a We have z=-9+33is0 that || =+/81+27 =108 = 63
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If arg z = O then we have that
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5 b We have |w| =+/3 and argw = Z—Zso by definition we have
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7 z=1+iV3 so |z|=\/1+3 =2 and if arg z = @ then we have

tan9=\/§so that 6':%

Now the equation = |z| implies that |W| = |Z| hence it only remains to find the

possible values of arg w= ¢ we have that
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Which means that z°w ™' is purely imaginary i.e. that arg(zzw”) =+
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So there are two cases to consider, we first consider the case arg(zzw 1) =3

Then if w=2¢'"we have 2 — ¢ =Zhence ¢ =Zso we have
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In the second case we have 2* — @ = —Z hence ¢ =Z*so we have
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8 a Notethat|1+i|= V2 and arg(l +i) =250 we can write it in exponential form as
1+i=+/2¢* hence we have (1+ i)2 =2¢* x~[2e* =2¢?

b We wish to prove by induction that

(1+i)" = 224
Note that the base case is already true for n =1 by the first part of the question so assume the

statement is true up to n =k then
k ki i k kmi k+l (k+Dmi
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Proving the statement is true for n =k +1 hence the claim is true by induction
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16mi

8 ¢ (1+i)°=2%2 =256

9 We have
e’ =cos@+isiné
e’ =cos(—6) +isin(—0) = cos @ —isin &
Multiplying the two equations gives
1=¢""xe™” =(cos @ +isin)(cos&—isinb)

=cos’ @ +sin” 0
Challenge

a We want to prove by induction that
(rei'g )” — peind
Clearly the statement is true when n =1, suppose now the statement is true for n =k then we have
(rei'g )k“ — el x (rei'g )k _ pell 5 ket — kHQi0HkE _ ke GiCke)

Proving the statement is true for n =k +1 hence the claim is true by induction.

b Now we want to show that
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Again by definition this is true when »n =1so suppose it is true for n =k, then we have
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Proving the statement is true for n =k +1 hence the claim is true by induction.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 4



