

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4726

Further Pure Mathematics 2

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

1	(i)	RHS = 2	$\left(\frac{1}{2}(e^x + e^{-x})\right)^2 - 1 = \frac{1}{2}(e^{2x} + e^{-2x}) = LHS$	M1		For correct squaring of $(e^x + e^{-x})$
		(2.	A1	2	For completely correct proof
	(ii)	$2\cosh^2 x$	$-1 = k \Rightarrow \cosh x = \sqrt{\left(\frac{1}{2}(1+k)\right)}$	M1		For use of (i) and solving for cosh x
			(2 /	A1		For correct positive square root only
		$2\sinh^2 x +$	$-1 = k \Rightarrow \sinh x = \pm \sqrt{\left(\frac{1}{2}(k-1)\right)}$	M1		For use of $\cosh^2 x - \sinh^2 x = 1$, or equivalent
			• (2 \ /)	A1	4	For both correct square roots
					-	1
					6	
2	(i)	x = -1 is	an asymptote	B1		For correct equation of vertical asymptote
		y = 2x + 1	$+\frac{2}{1}$	M1		For algebraic division, or equivalent
			x+1 = $2x+1$ is an asymptote	A1	3	For correct equation of oblique asymptote
				 		
	(ii)	EITHER:	Quadratic $2x^2 + (3-y)x + (3-y) = 0$	M1		For using discriminant of relevant quadratic
			has no real roots if $(3-y)^2 < 8(3-y)$	A1		For correct inequality or equation in y
			Hence $(3-y)(-5-y) < 0$	M1		For factorising, or equivalent
			So required values are 3 and −5	A1		For given answer correctly shown
		OR:	$\frac{dy}{dx} = 2 - \frac{2}{(x+1)^2} = 0$	M1		For differentiating and equating to zero
			Hence $(x+1)^2 = 1$	A1		For correct simplified quadratic in <i>x</i>
			So $x = -2$ and $0 \Rightarrow y = -5$ and 3	M1		For solving for x and substituting to find y
			,	A1	4	For given answer correctly shown
					7	
3	(i)	EITHER:	If $f(x) = \ln(x+2)$, then $f'(x) = \frac{1}{2+x}$	M1		For at least one differentiation attempt
			and $f''(x) = -\frac{1}{(2+x)^2}$	A1		For correct first and second derivatives
			$f(0) = \ln 2$, $f'(0) = \frac{1}{2}$, $f''(0) = -\frac{1}{4}$	A1√		For all three evaluations correct
			Hence $\ln(x+2) = \ln 2 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$	A1		For three correct terms
		OR:	$\ln(2+x) = \ln[2(1+\frac{1}{2}x)]$	M1		For factorising in this way
			$= \ln 2 + \ln(1 + \frac{1}{2}x)$	A1		For using relevant log law correctly
			$= \ln 2 + \frac{1}{2}x - \frac{\left(\frac{1}{2}x\right)^2}{2} + \dots$	M1		For use of standard series expansion
			$= \ln 2 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$	A1	4	For three correct terms
	(ii)		$= \ln 2 - \frac{1}{2}x - \frac{1}{8}x^2$	B1√		For replacing x by $-x$
		$\ln\left(\frac{2+x}{2-x}\right)$	$\approx (\ln 2 + \frac{1}{2}x - \frac{1}{8}x^2) - (\ln 2 - \frac{1}{2}x - \frac{1}{8}x^2)$	M1		For subtracting the two series
		()	$\approx x$, as required	A1	3	For showing given answer correctly
					7	

4	(i)	$r = 0 \Rightarrow \cos 2\theta = 0 \Rightarrow \theta = \pm \frac{1}{4}\pi, \pm \frac{3}{4}\pi$	M1		For equating r to zero and solving for θ
			A1		For any two correct values
			A1	3	For all four correct values and no others
	(ii)	Area is $\frac{1}{2} \int_{-\frac{1}{4}\pi}^{\frac{1}{4}\pi} 4\cos^2 2\theta d\theta$	M1		For us of correct formula $\frac{1}{2} \int r^2 d\theta$
			B1√		For correct limits from (i)
		i.e. $\int_{-\frac{1}{4}\pi}^{\frac{1}{4}\pi} 1 + \cos 4\theta d\theta = \left[\theta + \frac{1}{4}\sin 4\theta\right]_{-\frac{1}{4}\pi}^{\frac{1}{4}\pi} = \frac{1}{2}\pi$	M1		For using double-angle formula
		•	A1		For $\theta + \frac{1}{4}\sin 4\theta$ correct
			A1	5	For correct (exact) answer
				8	
5	(i)	LHS is the total area of the four rectangles	B1	<u> </u>	For identifying rectangle areas (not heights)
	, ,	RHS is the corresponding area under the curve,	D1	2	
		which is clearly greater	B1	2	For correct explanation
	(ii)	$\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} > \int_{0}^{4} \frac{1}{x+2} dx$	M1		For attempt at relevant new inequality
		3 (X / Z	A1	2	For correct statement
	(iii)	Sum is the area of 999 rectangles	M1		For considering the sum as an area again
		Bounds are $\int_0^{999} \frac{1}{x+2} dx$ and $\int_0^{999} \frac{1}{x+1} dx$	M1		For stating either integral as a bound
		So lower bound is $[\ln(x+2)]_0^{999} = \ln(500.5)$	A1		For showing the given value correctly
		and upper bound is $[\ln(x+1)]_0^{999} = \ln(1000)$	A1	4	Ditto
				8	
6	(i)	$I_n = \left[-\frac{2}{3} x^n (1-x)^{\frac{3}{2}} \right]_0^1 + \frac{2}{3} n \int_0^1 x^{n-1} (1-x)^{\frac{3}{2}} dx$	M1		For using integration by parts
			A1		For correct first stage result
		$= \frac{2}{3} n \int_0^1 x^{n-1} (1-x) \sqrt{(1-x)} dx$	M1		For use of limits in integrated term
		3 00	M1		For splitting the remaining integral up
		$= \frac{2}{3} n (I_{n-1} - I_n)$	A1		For correct relation between I_n and I_{n-1}
		Hence $(2n+3)I_n = 2nI_{n-1}$, as required	A1	6	For showing given answer correctly
	(ii)	$I_2 = \frac{4}{7}I_1 = \frac{4}{7} \times \frac{2}{5}I_0$	M1		For two uses of the recurrence relation
			A1		For correct expression in terms of I_0
		Hence $I_2 = \frac{8}{35} \left[-\frac{2}{3} (1-x)^{\frac{3}{2}} \right]_0^1 = \frac{16}{105}$	M1		For evaluation of I_0
			A1	4	For correct answer
				10	
			1		

4726 Specimen Paper [Turn over

1					
7	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cosh x - x \sinh x}{\cosh^2 x}$	M1		For differentiating and equating to zero
		$\frac{dx}{dx} = \cosh^2 x$ Max occurs when $\cosh x = x \sinh x$, i.e. $x \tanh x = 1$	A1	2	For showing given result correctly
	(ii)	.			
			D 1		For some of closeds of a south a
			B1 B1		For correct sketch of $y = \tanh x$ For identification of asymptote $y = 1$
			B1	3	For correct explanation of $\alpha > 1$ based on
		o x			intersection (1,1) of $y=1/x$ with $y=1$
	(iii)	$x_{n+1} = x_n - \frac{x_n \tanh x_n - 1}{\tanh x_n + x_n \operatorname{sech}^2 x_n}$	M1		For correct Newton-Raphson structure
			A1		For all details in $x - \frac{f(x)}{f'(x)}$ correct
		$x_1 = 1 \Rightarrow x_2 = 1.20177$	M1		For using Newton-Raphson at least once
			A1	_	For x_2 correct to at least 3sf
]		<i>x</i> ₃ = 1.1996785	A1	5	For x_3 correct to at least 4sf
	(iv)	$e_1 \approx 0.2, \ e_2 \approx -0.002$	B1√		For both magnitudes correct
		$\frac{e_3}{e_2^2} \approx \frac{e_2}{e_1^2} \Rightarrow e_3 \approx -2 \times 10^{-7}$	M1		For use of quadratic convergence property
		-2 -1	A1	3	For answer of correct magnitude
				13	
i		1.			
8	(i)	$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{2}(1+t^2)$	B1		For this relation, stated or used
8	(i)	$\frac{dt}{dx} = \frac{1}{2}(1+t^2)$ $\int_0^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_0^1 \sqrt{\frac{1-\frac{1-t^2}{1+t^2}}{1+\frac{2t}{1+t^2}}} \cdot \frac{2}{1+t^2} dt$	B1 M1		For this relation, stated or used For complete substitution for x in integrand
8	(i)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$			
8	(i)	a.	M1	4	For complete substitution for x in integrand
8		$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$	M1 B1	4	For complete substitution for x in integrand For justification of limits 0 and 1 for t
8		$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$	M1 B1 A1	4	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer
8		$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$	M1 B1 A1 B1	4	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs
8		$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$	M1 B1 A1 B1 M1	4	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i>
8		$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$	M1 B1 A1 B1 M1 B1		For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i>
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$	M1 B1 A1 B1 M1 B1 A1		For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i>
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$ From which $A = -\frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$ Int is $2\sqrt{2} \left[-\frac{1}{2} \ln(1+t) + \frac{1}{4} \ln(1+t^{2}) + \frac{1}{2} \tan^{-1} t \right]_{0}^{1}$	M1 B1 A1 B1 M1 B1 A1 A1		For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i> For correct value of <i>C</i> For both logarithm terms correct For the inverse tan term correct
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$ From which $A = -\frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$	M1 B1 A1 B1 M1 B1 A1 B1 A1 B1 M1 B1 M1	5	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i> For correct value of <i>C</i> For both logarithm terms correct For the inverse tan term correct For use of appropriate limits
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$ From which $A = -\frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$ Int is $2\sqrt{2} \left[-\frac{1}{2} \ln(1+t) + \frac{1}{4} \ln(1+t^{2}) + \frac{1}{2} \tan^{-1} t \right]_{0}^{1}$	M1 B1 A1 B1 M1 B1 A1 B1 A1 B1√ B1√	5	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i> For correct value of <i>C</i> For both logarithm terms correct For the inverse tan term correct
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$ From which $A = -\frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$ Int is $2\sqrt{2} \left[-\frac{1}{2} \ln(1+t) + \frac{1}{4} \ln(1+t^{2}) + \frac{1}{2} \tan^{-1} t \right]_{0}^{1}$	M1 B1 A1 B1 M1 B1 A1 B1 A1 B1 M1 B1 M1	54	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i> For correct value of <i>C</i> For both logarithm terms correct For the inverse tan term correct For use of appropriate limits
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$ From which $A = -\frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$ Int is $2\sqrt{2} \left[-\frac{1}{2} \ln(1+t) + \frac{1}{4} \ln(1+t^{2}) + \frac{1}{2} \tan^{-1} t \right]_{0}^{1}$	M1 B1 A1 B1 M1 B1 A1 B1 A1 B1 M1 B1 M1	55	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i> For correct value of <i>C</i> For both logarithm terms correct For the inverse tan term correct For use of appropriate limits
8	(ii)	$\int_{0}^{\frac{1}{2}\pi} \sqrt{\frac{1-\cos}{1+\sin x}} dx = \int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} dt$ $= \int_{0}^{1} \sqrt{\frac{2t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} dt = 2\sqrt{2} \int_{0}^{1} \frac{t}{(1+t)(1+t^{2})} dt$ $\frac{t}{(1+t)(1+t^{2})} = \frac{A}{1+t} + \frac{Bt+C}{1+t^{2}}$ Hence $t \equiv A(1+t^{2}) + (Bt+C)(1+t)$ From which $A = -\frac{1}{2}$, $B = \frac{1}{2}$, $C = \frac{1}{2}$ Int is $2\sqrt{2} \left[-\frac{1}{2} \ln(1+t) + \frac{1}{4} \ln(1+t^{2}) + \frac{1}{2} \tan^{-1} t \right]_{0}^{1}$	M1 B1 A1 B1 M1 B1 A1 B1 A1 B1 M1 B1 M1	54	For complete substitution for <i>x</i> in integrand For justification of limits 0 and 1 for <i>t</i> For correct simplification to given answer For statement of correct form of pfs For any use of the identity involving <i>B</i> or <i>C</i> For correct value of <i>A</i> For correct value of <i>B</i> For correct value of <i>C</i> For both logarithm terms correct For the inverse tan term correct For use of appropriate limits