
ADVANCED GCE UNIT 4726/01
MATHEMATICS

Further Pure Mathematics 2

THURSDAY 7 JUNE 2007 Morning

Time: 1 hour 30 minutes
Additional Materials: Answer Booklet (8 pages)

List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the spaces provided on the answer booklet.

• Answer all the questions.
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• You are permitted to use a graphical calculator in this paper.
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1 The equation of a curve, in polar coordinates, is

r = 2 sin 3θ , for 0 ≤ θ ≤ 1
3
π.

Find the exact area of the region enclosed by the curve between θ = 0 and θ = 1
3
π. [4]

2 (i) Given that f(x) = sin(2x + 1
4
π), show that f(x) = 1

2

√
2(sin 2x + cos 2x). [2]

(ii) Hence find the first four terms of the Maclaurin series for f(x). [You may use appropriate results
given in the List of Formulae.] [3]

3 It is given that f(x) = x2 + 9x(x − 1)(x2 + 9) .

(i) Express f(x) in partial fractions. [4]

(ii) Hence find � f(x) dx. [2]

4 (i) Given that

y = x
√

1 − x2 − cos−1 x,

find
dy
dx

in a simplified form. [4]

(ii) Hence, or otherwise, find the exact value of � 1

0
2
√

1 − x2 dx. [3]

5 It is given that, for non-negative integers n,

In = � e

1
(ln x)n dx.

(i) Show that, for n ≥ 1,

In = e − nIn−1. [4]
(ii) Find I3 in terms of e. [4]

© OCR 2007 4726/01 Jun07

physicsandmathstutor.com



3

6

The diagram shows the curve with equation y = 1

x2
for x > 0, together with a set of n rectangles of

unit width, starting at x = 1.

(i) By considering the areas of these rectangles, explain why

1

12
+ 1

22
+ 1

32
+ . . . + 1

n2
> � n+1

1

1

x2
dx. [2]

(ii) By considering the areas of another set of rectangles, explain why

1

22
+ 1

32
+ 1

42
+ . . . + 1

n2
< � n

1

1

x2
dx. [3]

(iii) Hence show that

1 − 1
n + 1

< n

∑
r=1

1

r2
< 2 − 1

n
. [4]

(iv) Hence give bounds between which
∞
∑
r=1

1

r2
lies. [2]

7 (i) Using the definitions of hyperbolic functions in terms of exponentials, prove that

cosh x cosh y − sinh x sinh y = cosh(x − y). [4]
(ii) Given that cosh x cosh y = 9 and sinh x sinh y = 8, show that x = y. [2]

(iii) Hence find the values of x and y which satisfy the equations given in part (ii), giving the answers
in logarithmic form. [4]
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8 The iteration xn+1 = 1(xn + 2)2
, with x1 = 0.3, is to be used to find the real root, α , of the equation

x(x + 2)2 = 1.

(i) Find the value of α, correct to 4 decimal places. You should show the result of each step of the
iteration process. [4]

(ii) Given that f(x) = 1(x + 2)2
, show that f ′(α) ≠ 0. [2]

(iii) The difference, δr, between successive approximations is given by δr = xr+1 − xr. Find δ3. [1]

(iv) Given that δr+1 ≈ f ′(α)δr, find an estimate for δ10. [3]

9 It is given that the equation of a curve is

y = x2 − 2ax
x − a

,

where a is a positive constant.

(i) Find the equations of the asymptotes of the curve. [4]

(ii) Show that y takes all real values. [4]

(iii) Sketch the curve y = x2 − 2ax
x − a

. [3]
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