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1 It is given that f(x) = ln(3 + x).
(i) Find the exact values of f(0) and f ′(0), and show that f ′′(0) = −1

9
. [3]

(ii) Hence write down the first three terms of the Maclaurin series for f(x), given that −3 < x ≤ 3.
[2]

2 It is given that f(x) = x2 − tan−1 x.

(i) Show by calculation that the equation f(x) = 0 has a root in the interval 0.8 < x < 0.9. [2]

(ii) Use the Newton-Raphson method, with a first approximation 0.8, to find the next approximation
to this root. Give your answer correct to 3 decimal places. [4]

3

The diagram shows the curve with equation y = ex2
, for 0 ≤ x ≤ 1. The region under the curve between

these limits is divided into four strips of equal width. The area of this region under the curve is A.

(i) By considering the set of rectangles indicated in the diagram, show that an upper bound for A
is 1.71. [3]

(ii) By considering an appropriate set of four rectangles, find a lower bound for A. [3]

4 (i) On separate diagrams, sketch the graphs of y = sinh x and y = cosech x. [3]

(ii) Show that cosech x = 2ex

e2x − 1
, and hence, using the substitution u = ex, find � cosech x dx. [6]
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5 It is given that, for non-negative integers n,

In = � 1
2
π

0
xn cos x dx.

(i) Prove that, for n ≥ 2,

I
n
= (1

2
π)n − n(n − 1)I

n−2
. [5]

(ii) Find I4 in terms of π. [4]

6

The diagram shows the curve with equation y = 2x2 − 3ax

x2 − a2
, where a is a positive constant.

(i) Find the equations of the asymptotes of the curve. [3]

(ii) Sketch the curve with equation

y2 = 2x2 − 3ax

x2 − a2
.

State the coordinates of any points where the curve crosses the axes, and give the equations of
any asymptotes. [5]

7 (i) Express
1 − t2

t2(1 + t2) in partial fractions. [4]

(ii) Use the substitution t = tan 1
2
x to show that

�
1
2
π

1
3
π

cos x
1 − cos x

dx = √
3 − 1 − 1

6
π. [5]
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8 (i) Define tanh y in terms of ey and e−y. [1]

(ii) Given that y = tanh−1 x, where −1 < x < 1, prove that y = 1
2

ln(1 + x
1 − x

). [3]

(iii) Find the exact solution of the equation 3 cosh x = 4 sinh x, giving the answer in terms of a
logarithm. [2]

(iv) Solve the equation

tanh−1 x + ln(1 − x) = ln(4
5
). [3]

9 The equation of a curve, in polar coordinates, is

r = sec θ + tan θ, for 0 ≤ θ ≤ 1
3
π.

(i) Sketch the curve. [2]

(ii) Find the exact area of the region bounded by the curve and the lines θ = 0 and θ = 1
3
π. [6]

(iii) Find a cartesian equation of the curve. [3]
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