Q	uesti	on	Answer	Marks	Guidance	
1	(a)	(i)	$\sin y = x \Longrightarrow \cos y \ \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	M1	Differentiating w.r.t. <i>x</i> or <i>y</i>	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos y$
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y}$	A1		
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = (\pm)\frac{1}{\sqrt{1-x^2}}$	A1(ag)	Completion www, but independent of B1	$\frac{dy}{dx} = \pm \frac{1}{\sqrt{1 - x^2}} \text{ or } \pm \text{ not}$ considered scores max. 3
			Taking + sign because gradient is positive	B1 [4]	Validly rejecting – sign. Dependent on A1 above	Or $-\frac{\pi}{2} \le y \le \frac{\pi}{2} \implies 0 \le \cos y \le 1$
1	(a)	(ii)	(A) $\int_{-1}^{1} \frac{1}{\sqrt{2-x^2}} dx = \left[\arcsin \frac{x}{\sqrt{2}} \right]_{-1}^{1}$	M1	arcsin alone, or any appropriate substitution	
				A1	$\arcsin\frac{x}{\sqrt{2}}$ or $\int 1 \mathrm{d}\theta$ www	Condone omitted or incorrect limits
			$=\frac{\pi}{2}$	A1		
				[3]		
			(B) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-2x^2}} dx = \frac{1}{\sqrt{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{\frac{1}{2}-x^2}} dx$			
			$=\frac{1}{\sqrt{2}}\left[\arcsin \sqrt{2}x \right]^{\frac{1}{2}}$	M1	arcsin alone, or any appropriate substitution	
			$\sqrt{2}$	A1	$\frac{1}{\sqrt{2}}$ and $\sqrt{2}x$ or $\int \frac{1}{\sqrt{2}} d\theta$ www	
				M1	Using consistent limits in order and evaluating in terms of π . Dependent on M1 above	e.g. $\pm \frac{\pi}{4}$ with sub. $x = \frac{1}{\sqrt{2}} \sin \theta$
			$=\frac{\pi}{2\sqrt{2}}$	A1		
				[4]		

G	Question		Answer	Marks	Guidance		
1	(b)		$r = \tan \theta$				
			$\Rightarrow x = r \cos \theta = \frac{\sin \theta}{\cos \theta} \times \cos \theta = \sin \theta$	M1 A1(ag)	Using $x = r \cos \theta$ o.e.		
			$\Rightarrow r^{2} = \frac{\sin^{2} \theta}{\cos^{2} \theta} = \frac{\sin^{2} \theta}{1 - \sin^{2} \theta} = \frac{x^{2}}{1 - x^{2}}$	M1 A1(ag)	Obtaining r^2 in terms of x		
			$r^{2} = x^{2} + y^{2} \Longrightarrow x^{2} + y^{2} = \frac{x^{2}}{1 - x^{2}}$				
			$\Rightarrow y^2 = \frac{x^2}{1 - x^2} - x^2$	M1	Obtaining y^2 in terms of x		
			$\Rightarrow y^{2} = \frac{x^{2} - x^{2}(1 - x^{2})}{1 - x^{2}} = \frac{x^{4}}{1 - x^{2}}$				
			$\Rightarrow y = \frac{x^2}{\sqrt{1 - x^2}}$	A1(ag)		Ignore discussion of \pm	
			Asymptote $x = 1$	B1 [7]	Condone $x = \pm 1$	$x \neq 1, x^2 = 1$ B0	
2	(a)	(i)	$z^n + \frac{1}{z^n} = 2\cos n\theta$	B1	Mark final answer		
			$z^n - \frac{1}{z^n} = 2j\sin n\theta$	B1	Mark final answer		
				[2]			
2	(a)	(ii)	$\left(z+\frac{1}{z}\right)^4 = z^4 + 4z^2 + 6 + \frac{4}{z^2} + \frac{1}{z^4} = z^4 + \frac{1}{z^4} + 4\left(z^2 + \frac{1}{z^2}\right) + 6$	M1	Expanding by Binomial or complete equivalent		
			$\Rightarrow (2\cos\theta)^4 = 2\cos 4\theta + 8\cos 2\theta + 6$	M1	Introducing cosines of multiple angles	Condone lost 2s	
				A1	RHS correct	Both As depend on both Ms	
			$\Rightarrow \cos^4 \theta = \frac{3}{8} + \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta$	A1ft	Dividing both sides by 16. F.t. line above	$A = \frac{3}{8}, B = \frac{1}{2}, C = \frac{1}{8}$ Give SC2 for fully correct	
				[4]		answer found "otherwise"	

⁴⁷⁵⁶

June 2	2012
--------	------

Q	uesti	on	Answer	Marks	Guid	ance
2	(a)	(iii)	$\cos^4\theta = \frac{3}{8} + \frac{1}{2} (2\cos^2\theta - 1) + \frac{1}{8}\cos 4\theta$	M1	Using (ii), obtaining $\cos 4\theta$ and expressing $\cos 2\theta$ in terms of $\cos^2\theta$	Condone $\cos 2\theta = \pm 1 \pm 2 \cos^2 \theta$
			$\Rightarrow \cos^{4}\theta = \cos^{2}\theta - \frac{1}{8} + \frac{1}{8}\cos 4\theta$ $\Rightarrow \cos 4\theta = 8\cos^{4}\theta - 8\cos^{2}\theta + 1$	A1 [2]	c.a.o.	
2	(b)	(i)	$z = 4e^{\frac{j\pi}{3}} \text{ and } w^2 = z \text{: let } w = re^{j\theta} \Longrightarrow w^2 = r^2 e^{2j\theta}$ $\Rightarrow r^2 = 4 \Longrightarrow r = 2$ and $\theta = \frac{\pi}{6}, \frac{7\pi}{6}$	B1 B1B1	Or $-\frac{5\pi}{6}$	Condone $r = \pm 2$ Award B2 for $\pi\left(k + \frac{1}{6}\right)$
			$\begin{array}{c} 2 \\ \hline \\ W_1 \\ \hline \\ W_2 \\ \hline \\ W_2 \\ \hline \\ \\ W_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	B1 B1 [5]	Roots with approx. equal moduli and approx. correct argument Dependent on first B1 z in correct position	Ignore annotations and scales $\leq \pi/4$ Modulus and argument bigger
2	(b)	(ii)	$z = 4e^{\frac{j\pi}{3}} \Rightarrow z^n = 4^n e^{\frac{j\pi n}{3}}$ so real if $\frac{\pi n}{3} = \pi \Rightarrow n = 3$	B1		Ignore other larger values
			Imaginary if $\frac{\pi n}{3} = \frac{\pi}{2} + k\pi \Rightarrow n = \frac{3}{2} + 3k$ which is not an integer for any k $w_1 = 2e^{\frac{j\pi}{6}} \Rightarrow w_1^3 = 8e^{\frac{j\pi}{2}} = 8j$ $w_2 = 2e^{\frac{7j\pi}{6}} \Rightarrow w_2^3 = 8e^{\frac{7j\pi}{2}} = -8j$	M1 A1(ag) M1 A1	$\cos \frac{\pi n}{3} = 0 \text{ or } \frac{\pi n}{3} = \frac{\pi}{2}$ An argument which covers the positive and negative im. axis Attempting their w ³ in any form 8j, -8j	Must deal with mod and arg
			$w_1 - 2e^{-3} \implies w_1 - 3e^{-2} - 3j$ $w_2 = 2e^{\frac{7j\pi}{6}} \implies w_2^{-3} = 8e^{\frac{7j\pi}{2}} = -8j$	A1 [5]	8j, -8j	

C	uesti	on	Answer	Marks	s Guidance		
3	(i)		$\det (\mathbf{M}) = 1(2a+8) - 2(-2-12) + 3(2-3a)$	M1A1	Obtaining $det(\mathbf{M})$ in terms of a	Accept unsimplified	
			=42-7a	A 1			
			\Rightarrow no inverse if $a = 6$	AI	At least 4 sefectors compat	Accept $a \neq 6$ after correct det	
			(2a+8 -10 8-3a)	M1	(including one involving <i>a</i>)	by the corresponding element	
			$\mathbf{M}^{-1} = \frac{1}{14} + \frac{1}{7} - \frac{7}{7}$	A1	Six signed cofactors correct		
			$42 - 7a \left(\begin{array}{cc} 2 - 3a & 8 & a + 2 \end{array} \right)$	M1	Transposing and \div by det(M). Dependent on previous M1M1		
				A1		Mark final answer	
				[7]			
			$\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 8 & -10 & 8 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	M1	Substituting $a = 0$		
3	(ii)		$ \begin{vmatrix} y \\ z \end{vmatrix} = \frac{1}{42} \begin{vmatrix} 14 & -7 & -7 \\ 2 & 8 & 2 \end{vmatrix} \begin{pmatrix} -2 \\ 1 \end{vmatrix} $	M1	Correct use of inverse	One correct element. Condone missing determinant	
			$\Rightarrow x = \frac{6}{7}, y = \frac{1}{2}, z = -\frac{2}{7}$	A2	Dependent on both M marks. Give A1 for one correct SC1 for $x = 6$, $y = 3.5$, $z = -2$	After M0, give SC2 for correct solution and SC1 for one correct Answers unsupported score 0	
				[4]		II III	
3	(iii)		e.g. $7x - 10y = 10$, $7x - 10y = 3b - 2$	M1	Eliminating one variable in two different ways	Or 7x - 10y = 2b + 2	
			(or e.g. $4x + 5z = 5$, $4x + 5z = b + 1$)		5	Or $8x + 10z = 3b - 2$	
			(or e.g. $8y + 7z = -1$, $8y + 7z = 3 - b$)	A1	Two correct equations	Or $16y + 14z = b - 6$	
			For solutions, $10 = 3b - 2$	M1	Validly obtaining a value of <i>b</i>		
			$\Rightarrow b=4$	A1			
			OR M	2	A method leading to an equation from which <i>b</i> could be found	E.g. setting $z = 0$, augmented matrix, adjoint matrix, etc.	
			A		A correct equation		
	 		b=4 A				
			$r = \frac{1}{2} = 0.7 = 1.7 = 1.08 $	M1	Obtaining general soln. by e.g. setting one unknown = λ and	Accept unknown instead of λ $x = \frac{10}{2}\lambda + \frac{10}{2}$, $y = \lambda$, $z = -\frac{8}{2}\lambda - \frac{1}{2}$	
			$x = \lambda, y = 0.7 \lambda$ 1, $\zeta = 1$ 0.0 λ		finding other two in terms of λ	$x - \frac{5}{2} - \frac{5}{2} \lambda y - \frac{7}{2} \lambda - \frac{1}{2} - \frac{1}{2}$	
				A1	Any correct form	$\begin{bmatrix} x - \frac{1}{4} & \frac{1}{4}\lambda, y - \frac{1}{8}\lambda & \frac{1}{8}, z - \lambda \end{bmatrix}$	
			Straight line	B1	Accept "sheaf", "pages of a	Independent of all previous	
				[7]		marks. Ignore other comments	

Question		on	Answer	Marks	Guidance		
4	(i)		$\sinh u = \frac{e^u - e^{-u}}{2} \Rightarrow \sinh^2 u = \frac{e^{2u} - 2 + e^{-2u}}{4}$	B1	$\left(e^{u} - e^{-u}\right)^{2} = e^{2u} - 2 + e^{-2u}$	Accept other or mixed variables	
			$\Rightarrow 2 \sinh^2 u + 1 = \frac{e^{2u} - 2 + e^{-2u}}{2} + 1 = \frac{e^{2u} + e^{-2u}}{2}$	B 1	$\cosh 2u = \frac{\mathrm{e}^{2u} + \mathrm{e}^{-2u}}{2}$		
			$=\cosh 2u$	B1	Completion www		
4	(ii)		If $\cosh y = u$, $u = \frac{e^{y} + e^{-y}}{2}$	M1	Expressing <i>u</i> in exponential form	$\frac{1}{2}$, + must be correct	
			$\Rightarrow e^{y} + e^{-y} = 2u \Rightarrow e^{2y} - 2ue^{y} + 1 = 0$ $\Rightarrow (e^{y} - u)^{2} - u^{2} + 1 = 0$				
			$\Rightarrow e^y = u \pm \sqrt{u^2 - 1}$	M1	Reaching e ^y	Condone omitted ±	
			$\Rightarrow y = \ln\left(u + \sqrt{u^2 - 1}\right)$	A1(ag)	Completion www; indep. of B1	$y = \ln\left(u \pm \sqrt{u^2 - 1}\right) \text{ or } \pm \text{ not}$ considered scores max. 3	
			$y \ge 0 \Longrightarrow e^y = u + \sqrt{u^2 - 1}$	B1	Validly rejecting – sign Dependent on A1 above		
			$\mathbf{OR}\ln\left(u+\sqrt{u^2-1}\right) = \ln\left(\cosh y + \sqrt{\cosh^2 y - 1}\right) \qquad \qquad \mathbf{M1}$		Substituting $u = \cosh y$		
			$= \ln(\cosh y + \sinh y)$				
			since $\sinh y > 0$ B1		Rejecting -ve square root	Dependent on A1	
			$= \ln(e^{y}) $ M1		Reaching e ^y		
	 		= y A1		Completion www; indep. of B1		
				[4]			

⁴⁷⁵⁶

Q	uesti	on	Answer	Marks	Guidance		
4	(iii)		$x = \frac{1}{2}\cosh u \Rightarrow \frac{dx}{du} = \frac{1}{2}\sinh u$	M1	Reaching integrand equivalent to $k \sinh^2 u$		
			$\int \sqrt{4x^2 - 1} \mathrm{d}x = \int \sqrt{\cosh^2 u - 1} \times \frac{1}{2} \sinh u \mathrm{d}u$				
			$=\int \frac{1}{2}\sinh^2 u \mathrm{d}u$	A1			
			$=\int \frac{1}{4}\cosh 2u - \frac{1}{4}\mathrm{d}u$	M1	Simplifying to integrable form. Dependent on M1 above	Or $\frac{1}{8}e^{2u} - \frac{1}{4} + \frac{1}{8}e^{-2u}$	
			$=\frac{1}{8}\sinh 2u - \frac{1}{4}u + c$	A1A1	For $\frac{1}{8}$ sinh 2 <i>u</i> o.e. and $-\frac{1}{4}u$ seen	Or $\frac{1}{16}e^{2u} - \frac{1}{4}u - \frac{1}{16}e^{-2u} + c$	
			$=\frac{1}{4}\sinh u\cosh u - \frac{1}{4}u + c$			Condone omission of $+ c$ throughout	
			$=\frac{1}{4}\sqrt{4x^{2}-1}\times 2x - \frac{1}{4}\operatorname{arcosh} 2x + c$	M1	Clear use of sinh $2u = 2 \sinh u \cosh u$ Dependent on M1M1 above		
			$=\frac{1}{2}x\sqrt{4x^2-1} - \frac{1}{4}\operatorname{arcosh} 2x + c$				
			$a = \frac{1}{2}$	A1		<i>a</i> , <i>b</i> need not be written separately	
				[7]			
4	(iv)		$\int_{\frac{1}{2}}^{1} \sqrt{4x^2 - 1} dx = \left[\frac{1}{2}x\sqrt{4x^2 - 1} - \frac{1}{4}\operatorname{arcosh} 2x\right]_{\frac{1}{2}}^{1}$	M1	Using their (iii) and using limits correctly		
			$=\frac{\sqrt{3}}{2}-\frac{1}{4}\operatorname{arcosh} 2+\frac{1}{4}\operatorname{arcosh} 1$	A1ft	May be implied F.t. values of <i>a</i> and <i>b</i> in (iii)	$a\sqrt{3} - b \operatorname{arcosh} 2$. No decimals. Must have obtained values for <i>a</i> and <i>b</i>	
			$=\frac{\sqrt{3}}{2} - \frac{1}{4}\ln\left(2 + \sqrt{3}\right) + \frac{1}{4}\ln 1$	M1	Using (ii) accurately Dependent on M1 above		
			$=\frac{\sqrt{3}}{2} - \frac{1}{4}\ln(2 + \sqrt{3})$	A1	c.a.o. A0 if ln 1 retained Mark final answer	Correct answer www scores 4/4	
				[4]			

Question		on	Answer	Marks	Guid	lance
5	(i)		Undefined for $\theta = \frac{\pi}{2}$ and $\frac{3\pi}{2}$	B1B1		
				[2]		
5	(ii)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Vertical line through (1, 0) (indicated, e.g. by scale)	
			$r = \sec \theta \implies r \cos \theta = 1$	M1	Use of $x = r \cos \theta$	
			$\Rightarrow x = 1$	A1		
5	(:::)		- 1.	[3]		
5			$a = -1$ $a = -1$ $a = -1$ gives same curve $a = 1, 0 < \theta < \pi \text{ corresponds to } a = -1, \pi < \theta < 2\pi$ $a = -1, 0 < \theta < \pi \text{ corresponds to } a = 1, \pi < \theta < 2\pi$	B1 B2 B1 B1 B1 [6]	Section through (2, 0) (indicated) Section through (0, 0) (give B1 for one error)	If asymptote included max. 2/3

Q	uesti	on	Answer	Marks	Guid	ance
5	(iv)		Loop e.g. <i>a</i> = 2	B1		
				B2 [3]	Give B1 for one error	
5	(v)		$r = \sec \theta + a$			
			$\Rightarrow r = \frac{r}{x} + a$	M1	Use of $x = r \cos \theta$	
			$\Rightarrow r\left(1-\frac{1}{x}\right) = a$			
			$\Rightarrow \sqrt{x^2 + y^2} \left(\frac{x - 1}{x}\right) = a$	M1	Use of $r = \sqrt{x^2 + y^2}$	
			$\Rightarrow \sqrt{x^2 + y^2} (x - 1) = ax$	M1	Correct manipulation	
			$\Rightarrow (x^2 + y^2)(x - 1)^2 = a^2 x^2$	A1(ag)		
				[4]		

⁴⁷⁵⁶