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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions in Section A and one question from Section B.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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Section A (54 marks)

Answer all the questions

1 (a) (i) Use the Maclaurin series for ln(1 + x) and ln(1 − x) to obtain the first three non-zero terms

in the Maclaurin series for ln(1 + x

1 − x
). State the range of validity of this series. [4]

(ii) Find the value of x for which
1 + x

1 − x
= 3. Hence find an approximation to ln 3, giving your

answer to three decimal places. [4]

(b) A curve has polar equation r = a

1 + sin θ
for 0 ≤ θ ≤ π, where a is a positive constant. The points

on the curve have cartesian coordinates x and y.

(i) By plotting suitable points, or otherwise, sketch the curve. [3]

(ii) Show that, for this curve, r + y = a and hence find the cartesian equation of the curve. [5]

2 (i) Obtain the characteristic equation for the matrix M where

M = ( 3 1 −2

0 −1 0

2 0 1

) .

Hence or otherwise obtain the value of det(M). [3]

(ii) Show that −1 is an eigenvalue of M, and show that the other two eigenvalues are not real.

Find an eigenvector corresponding to the eigenvalue −1.

Hence or otherwise write down the solution to the following system of equations. [9]

3x + y − 2ß = −0.1

− y = 0.6

2x + ß = 0.1

(iii) State the Cayley-Hamilton theorem and use it to show that

M
3 = 3M

2 − 3M − 7I.

Obtain an expression for M−1 in terms of M2, M and I. [4]

(iv) Find the numerical values of the elements of M−1, showing your working. [3]
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3 (a) (i) Sketch the graph of y = arcsin x for −1 ≤ x ≤ 1. [1]

Find
dy

dx
, justifying the sign of your answer by reference to your sketch. [4]

(ii) Find the exact value of the integral ä 1

0

1√
2 − x2

dx. [3]

(b) The infinite series C and S are defined as follows.

C = cos θ + 1

3
cos 3θ + 1

9
cos 5θ + . . .

S = sin θ + 1

3
sin 3θ + 1

9
sin 5θ + . . .

By considering C + jS, show that

C = 3 cos θ
5 − 3 cos 2θ

,

and find a similar expression for S. [11]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Prove, from definitions involving exponentials, that

cosh 2u = 2 cosh
2
u − 1. [3]

(ii) Prove that arsinh y = ln(y +√y2 + 1). [4]

(iii) Use the substitution x = 2 sinh u to show that

ã √x2 + 4 dx = 2 arsinh 1

2
x + 1

2
x
√

x2 + 4 + c,

where c is an arbitrary constant. [6]

(iv) By first expressing t2 + 2t + 5 in completed square form, show that

ã 1

−1

√
t2 + 2t + 5 dt = 2(ln(1 + √

2) + √
2). [5]

[Question 5 is printed overleaf.]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 Fig. 5 shows a circle with centre C (a, 0) and radius a. B is the point (0, 1). The line BC intersects

the circle at P and Q; P is above the x-axis and Q is below.

B

O

P

Q

C ( , 0)a

Fig. 5

(i) Show that, in the case a = 1, P has coordinates (1 − 1√
2

,
1√
2
). Write down the coordinates of Q.

[3]

(ii) Show that, for all positive values of a, the coordinates of P are

x = a(1 − a√
a2 + 1

), y = a√
a2 + 1

. (∗)
Write down the coordinates of Q in a similar form. [4]

Now let the variable point P be defined by the parametric equations (∗) for all values of the parameter

a, positive, zero and negative. Let Q be defined for all a by your answer in part (ii).

(iii) Using your calculator, sketch the locus of P as a varies. State what happens to P as a → ∞ and

as a → −∞.

Show algebraically that this locus has an asymptote at y = −1.

On the same axes, sketch, as a dotted line, the locus of Q as a varies. [8]

(The single curve made up of these two loci and including the point B is called a right strophoid.)

(iv) State, with a reason, the size of the angle POQ in Fig. 5. What does this indicate about the angle

at which a right strophoid crosses itself? [3]
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