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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided

on the Answer Booklet.
• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions in Section A and one question from Section B.

• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.
• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.

• You are advised that an answer may receive no marks unless you show sufficient detail of the working to
indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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Section A (54 marks)

Answer all the questions

1 (a) Given that y = arctan
√

x, find
dy

dx
, giving your answer in terms of x. Hence show that

ä 1

0

1√
x(x + 1) dx = π

2
. [6]

(b) A curve has cartesian equation

x2 + y2 = xy + 1.

(i) Show that the polar equation of the curve is

r2 = 2

2 − sin 2θ
. [4]

(ii) Determine the greatest and least positive values of r and the values of θ between 0 and 2π
for which they occur. [6]

(iii) Sketch the curve. [2]

2 (a) Use de Moivre’s theorem to find the constants a, b, c in the identity

cos 5θ ≡ a cos5 θ + b cos3 θ + c cos θ. [6]

(b) Let

C = cos θ + cos(θ + 2π
n

) + cos(θ + 4π
n

) + . . . + cos(θ + (2n − 2)π
n

),

and S = sin θ + sin(θ + 2π
n

) + sin(θ + 4π
n

) + . . . + sin(θ + (2n − 2)π
n

),

where n is an integer greater than 1.

By considering C + jS, show that C = 0 and S = 0. [7]

(c) Write down the Maclaurin series for et as far as the term in t2.

Hence show that, for t close to zero,

t

et − 1
≈ 1 − 1

2
t. [5]

© OCR 2010 4756 Jan10

PMT



3

3 (i) Find the inverse of the matrix  1 1 a

2 −1 2

3 −2 2


where a ≠ 4.

Show that when a = −1 the inverse is

1
5
 2 0 1

2 5 −4−1 5 −3

 . [6]

(ii) Solve, in terms of b, the following system of equations. [5]

x + y − ß = −2

2x − y + 2ß = b

3x − 2y + 2ß = 1

(iii) Find the value of b for which the equations

x + y + 4ß = −2

2x − y + 2ß = b

3x − 2y + 2ß = 1

have solutions. Give a geometrical interpretation of the solutions in this case. [7]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Prove, using exponential functions, that

cosh 2x = 1 + 2 sinh2 x.

Differentiate this result to obtain a formula for sinh 2x. [4]

(ii) Solve the equation

2 cosh 2x + 3 sinh x = 3,

expressing your answers in exact logarithmic form. [7]

(iii) Given that cosh t = 5
4
, show by using exponential functions that t = ± ln 2.

Find the exact value of the integral

ä 5

4

1√
x2 − 16

dx. [7]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 A line PQ is of length k (where k > 1) and it passes through the point (1, 0). PQ is inclined at angle θ
to the positive x-axis. The end Q moves along the y-axis. See Fig. 5. The end P traces out a locus.

y

x

O

Q

P

1

q

Fig. 5

(i) Show that the locus of P may be expressed parametrically as follows. [3]

x = k cos θ y = k sin θ − tan θ

You are now required to investigate curves with these parametric equations, where k may take any

non-zero value and −1
2
π < θ < 1

2
π.

(ii) Use your calculator to sketch the curve in each of the cases k = 2, k = 1, k = 1
2

and k = −1. [4]

(iii) For what value(s) of k does the curve have

(A) an asymptote (you should state what the asymptote is),

(B) a cusp,

(C) a loop? [3]

(iv) For the case k = 2, find the angle at which the curve crosses itself. [2]

(v) For the case k = 8, find in an exact form the coordinates of the highest point on the loop. [3]

(vi) Verify that the cartesian equation of the curve is

y2 = (x − 1)2

x2
(k2 − x2). [3]
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