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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions in Section A and one question from Section B.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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Section A (54 marks)

Answer all the questions

1 (a) (i) By considering the derivatives of cos x, show that the Maclaurin expansion of cos x begins

1 − 1

2
x2 + 1

24
x4. [4]

(ii) The Maclaurin expansion of sec x begins

1 + ax
2 + bx

4
,

where a and b are constants. Explain why, for sufficiently small x,(1 − 1

2
x2 + 1

24
x4)(1 + ax2 + bx4) ≈ 1.

Hence find the values of a and b. [5]

(b) (i) Given that y = arctan(x

a
), show that

dy

dx
= a

a2 + x2
. [4]

(ii) Find the exact values of the following integrals.

(A) ä 2

−2

1

4 + x2
dx [3]

(B) ä
1

2

−1

2

4

1 + 4x2
dx [3]

2 (i) Write down the modulus and argument of the complex number ejπ/3. [2]

(ii) The triangle OAB in an Argand diagram is equilateral. O is the origin; A corresponds to the

complex number a = √
2(1 + j); B corresponds to the complex number b.

Show A and the two possible positions for B in a sketch. Express a in the form rejθ . Find the

two possibilities for b in the form rejθ . [5]

(iii) Given that ß
1
= √

2ejπ/3, show that ß6

1
= 8. Write down, in the form rejθ , the other five complex

numbers ß such that ß6 = 8. Sketch all six complex numbers in a new Argand diagram. [6]

Let w = ß
1
e−jπ/12.

(iv) Find w in the form x + jy, and mark this complex number on your Argand diagram. [3]

(v) Find w6, expressing your answer in as simple a form as possible. [2]
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3 (a) A curve has polar equation r = a tan θ for 0 ≤ θ ≤ 1

3
π, where a is a positive constant.

(i) Sketch the curve. [3]

(ii) Find the area of the region between the curve and the line θ = 1

4
π. Indicate this region on

your sketch. [5]

(b) (i) Find the eigenvalues and corresponding eigenvectors for the matrix M where

M = ( 0.2 0.8

0.3 0.7
) . [6]

(ii) Give a matrix Q and a diagonal matrix D such that M = QDQ−1. [3]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (a) (i) Prove, from definitions involving exponentials, that

cosh
2
x − sinh

2
x = 1. [2]

(ii) Given that sinh x = tan y, where −1

2
π < y < 1

2
π, show that

(A) tanh x = sin y,

(B) x = ln(tan y + sec y). [6]

(b) (i) Given that y = artanh x, find
dy

dx
in terms of x.

Hence show that ä
1

2

−1

2

1

1 − x2
dx = 2 artanh 1

2
. [4]

(ii) Express
1

1 − x2
in partial fractions and hence find an expression for ä 1

1 − x2
dx in terms of

logarithms. [4]

(iii) Use the results in parts (i) and (ii) to show that artanh 1

2
= 1

2
ln 3. [2]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 The limaçon of Pascal has polar equation r = 1 + 2a cos θ, where a is a constant.

(i) Use your calculator to sketch the curve when a = 1. (You need not distinguish between parts of

the curve where r is positive and negative.) [3]

(ii) By using your calculator to investigate the shape of the curve for different values of a, positive

and negative,

(A) state the set of values of a for which the curve has a loop within a loop,

(B) state, with a reason, the shape of the curve when a = 0,

(C) state what happens to the shape of the curve as a → ±∞,

(D) name the feature of the curve that is evident when a = 0.5, and find another value of a for

which the curve has this feature. [7]

(iii) Given that a > 0 and that a is such that the curve has a loop within a loop, write down an equation

for the values of θ at which r = 0. Hence show that the angle at which the curve crosses itself is

2 arccos( 1

2a
).

Obtain the cartesian equations of the tangents at the point where the curve crosses itself. Explain

briefly how these equations relate to the answer to part (ii)(A). [8]
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