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INSTRUCTIONS TO CANDIDATES

• Write your name in capital letters, your Centre Number and Candidate Number in the spaces
provided on the Answer Booklet.

• Read each question carefully and make sure you know what you have to do before starting
your answer.

• Answer all the questions in Section A and one question from Section B.

• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.

• The total number of marks for this paper is 72.

• You are advised that an answer may receive no marks unless you show sufficient detail of the
working to indicate that a correct method is being used.
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Section A (54 marks)

Answer all the questions

1 (a) Fig. 1 shows the curve with polar equation r = a(1 − cos 2θ) for 0 ≤ θ ≤ π, where a is a positive
constant.

O

Fig. 1

Find the area of the region enclosed by the curve. [7]

(b) (i) Given that f(x) = arctan(√3 + x), find f ′(x) and f ′′(x). [4]

(ii) Hence find the Maclaurin series for arctan(√3 + x), as far as the term in x2. [4]

(iii) Hence show that, if h is small, � h

−h
x arctan(√3 + x) dx ≈ 1

6
h3. [3]

2 (a) Find the 4th roots of 16j, in the form re jθ where r > 0 and −π < θ ≤ π. Illustrate the 4th roots on
an Argand diagram. [6]

(b) (i) Show that (1 − 2e jθ)(1 − 2e−jθ) = 5 − 4 cos θ. [3]

Series C and S are defined by

C = 2 cos θ + 4 cos 2θ + 8 cos 3θ + . . . + 2n cos nθ ,

S = 2 sin θ + 4 sin 2θ + 8 sin 3θ + . . . + 2n sin nθ .

(ii) Show that C = 2 cos θ − 4 − 2n+1 cos(n + 1)θ + 2n+2 cos nθ
5 − 4 cos θ

, and find a similar expression

for S. [9]
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3 You are given the matrix M = ( 7 3−4 −1
).

(i) Find the eigenvalues, and corresponding eigenvectors, of the matrix M. [8]

(ii) Write down a matrix P and a diagonal matrix D such that P−1MP = D. [2]

(iii) Given that Mn = (a b
c d

), show that a = −1
2
+ 3

2
× 5n, and find similar expressions for b, c and d.

[8]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Given that k ≥ 1 and cosh x = k, show that x = ± ln(k +√k2 − 1 ). [5]

(ii) Find � 2

1

1√
4x2 − 1

dx, giving the answer in an exact logarithmic form. [5]

(iii) Solve the equation 6 sinh x − sinh 2x = 0, giving the answers in an exact form, using logarithms
where appropriate. [4]

(iv) Show that there is no point on the curve y = 6 sinh x − sinh 2x at which the gradient is 5. [4]

[Question 5 is printed overleaf.]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 A curve has parametric equations x = t2

1 + t2
, y = t3 − λ t, where λ is a constant.

(i) Use your calculator to obtain a sketch of the curve in each of the cases

λ = −1, λ = 0 and λ = 1.

Name any special features of these curves. [5]

(ii) By considering the value of x when t is large, write down the equation of the asymptote. [1]

For the remainder of this question, assume that λ is positive.

(iii) Find, in terms of λ , the coordinates of the point where the curve intersects itself. [3]

(iv) Show that the two points on the curve where the tangent is parallel to the x-axis have coordinates

( λ
3 + λ

, ±
√

4λ3

27
). [4]

Fig. 5 shows a curve which intersects itself at the point (2, 0) and has asymptote x = 8. The stationary
points A and B have y-coordinates 2 and −2.

O
x

y

Fig. 5

A

B

82

2

–2

(v) For the curve sketched in Fig. 5, find parametric equations of the form x = at2

1 + t2
, y = b(t3 − λ t),

where a, λ and b are to be determined. [5]
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