Centre No.				Paper Reference			Surname	Initial(s)			
Candidate No.			6	6	6	8	/	0	1	Signature	

Paper Reference(s)

6668/01

Edexcel GCE

Further Pure Mathematics FP2 Advanced/Advanced Subsidiary

Wednesday 3 June 2015 – Morning

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

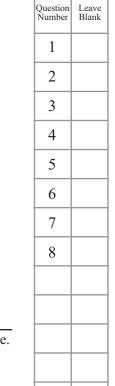
Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 32 pages in this question paper. Any blank pages are indicated.

Advice to Candidates


You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2015 Pearson Education Ltd.

Printer's Log. No. P44831A W850/R6668/57570 5/1/1/1/1/

Examiner's use only

Team Leader's use only

Turn over

Total

	1
Leave	
blank	

1. (a) Use algebra to find the set of values of x for which

$$x + 2 > \frac{12}{x + 3} \tag{6}$$

(b) Hence, or otherwise, find the set of values of x for which

$$x + 2 > \frac{12}{|x+3|} \tag{1}$$

Question 1 continued	Leave blank
Question I continued	

PhysicsAndMathsTutor.com					
2.	$z = -2 + \left(2\sqrt{3}\right)i$		Leave		
	(a) Find the modulus and the argument of z .	(3)			
	Using de Moivre's theorem,				
	(b) find z^6 , simplifying your answer,	(2)			
	(c) find the values of w such that $w^4 = z^3$, giving your answers in the form $a + ib$ where $a, b \in \mathbb{R}$.	(4)			
		(4)			

estion 2 continued		

Leave blank

2	Eind in	the form	$\dots = f(n)$	the comena	a a lusti a m	of the	differential	agnation
Э.	rina, in	me form	y-1(x),	me general	Solution	or me	differential	equation

$\tan x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 3\cos 2x \tan x,$	$0 < x < \frac{\pi}{2}$	(6)

Leave blank

4. (a) Show that

$$r^{2}(r+1)^{2} - (r-1)^{2} r^{2} \equiv 4r^{3}$$

(3)

Given that $\sum_{r=1}^{n} r = \frac{1}{2} n(n+1)$

(b) use the identity in (a) and the method of differences to show that

$$(1^3 + 2^3 + 3^3 + ... + n^3) = (1 + 2 + 3 + ... + n)^2$$

(4)

Question 4 continued	Leave blank

Leave blank

5. A transformation T from the z-plane to the w-plane is given by

$$w = \frac{z}{z+3i}, \quad z \neq -3i$$

The circle with equation |z| = 2 is mapped by T onto the curve C.

- (a) (i) Show that C is a circle.
 - (ii) Find the centre and radius of C.

(8)

The region $|z| \le 2$ in the z-plane is mapped by T onto the region R in the w-plane.

(b) Shade the region *R* on an Argand diagram.

(2)

16

	Question 5 continued	Leave blank
I		

Leave blank

6.

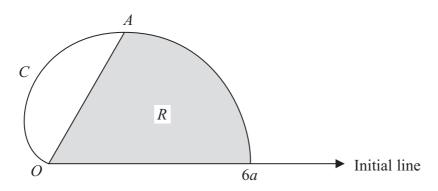


Figure 1

The curve C, shown in Figure 1, has polar equation

$$r = 3a (1 + \cos \theta), \quad 0 \leqslant \theta < \pi$$

The tangent to C at the point A is parallel to the initial line.

(a) Find the polar coordinates of A.

(6)

(5)

The finite region R, shown shaded in Figure 1, is bounded by the curve C, the initial line and the line OA.

(b) Use calculus to find the area of the shaded region R, giving your answer in the

form $a^2 (p\pi + q\sqrt{3})$, where p and	q are rational	numbers.	

	THE RESERVE THE PROPERTY OF THE PARTY OF THE	
		 , , , , , , , , , , , , , , , , , , ,

estion 6 continued		

Leave blank

7.

$$y = \tan^2 x, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(a) Show that $\frac{d^2 y}{dx^2} = 6 \sec^4 x - 4 \sec^2 x$

(4)

(b) Hence show that $\frac{d^3y}{dx^3} = 8\sec^2 x \tan x \ (A \sec^2 x + B)$, where A and B are constants to be found.

(3)

(c) Find the Taylor series expansion of $\tan^2 x$, in ascending powers of $\left(x - \frac{\pi}{3}\right)$, up to and including the term in $\left(x - \frac{\pi}{3}\right)^3$

(4)

uestion 7 continued		
		_
		_
		_
		_
		_
		_
		_

Leave blank

8. (a) Show that the transformation $x = e^u$ transforms the differential equation

$$x^{2} \frac{d^{2} y}{dx^{2}} - 7x \frac{dy}{dx} + 16 y = 2 \ln x, \quad x > 0$$
 (I)

into the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - 8\frac{\mathrm{d}y}{\mathrm{d}u} + 16 \ y = 2u \tag{II}$$

(6)

(b) Find the general solution of the differential equation (II), expressing y as a function of u.

(7)

(c) Hence obtain the general solution of the differential equation (I).

(1)

uestion 8 continued		
		_
		_
		_

