Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

A	(A	1
1.	1/	-X-		

General Certificate of Education Advanced Level Examination June 2010

Mathematics

MFP2

Unit Further Pure 2

Wednesday 9 June 2010 1.30 pm to 3.00 pm

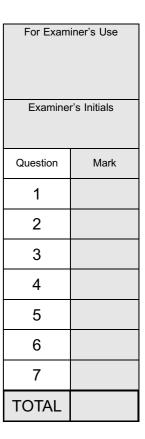
For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions


- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

 Unless stated otherwise, you may quote formulae, without proof, from the booklet.

	Answer all questions in the spaces provided.
1 (a) Show that
	$9\sinh x - \cosh x = 4e^x - 5e^{-x} $ (2 marks)
(b) Given that
	$9\sinh x - \cosh x = 8$
	find the exact value of $tanh x$. (7 marks)
QUESTION PART REFERENCE	
•	
••••••	
•••••	
•••••	
•••••	
•••••	

2 (a)	Express $\frac{1}{r(r+2)}$ in partial fractions.	(3 marks)
-------	--	-----------

(b) Use the method of differences to find

$$\sum_{r=1}^{48} \frac{1}{r(r+2)}$$

giving your answer as a rational number.

(5 marks)

OLESTION PART PROPERTY OF THE PART PART PART PART PART PART PART PART

3 Two loci, L_1 and L_2 , in an Argand diagram are given by

$$L_1 : |z + 1 + 3i| = |z - 5 - 7i|$$

$$L_2: \arg z = \frac{\pi}{4}$$

- Verify that the point represented by the complex number 2 + 2i is a point of intersection of L_1 and L_2 . (2 marks)
- (b) Sketch L_1 and L_2 on one Argand diagram. (5 marks)
- (c) Shade on your Argand diagram the region satisfying

both
$$|z+1+3i| \le |z-5-7i|$$

and $\frac{\pi}{4} \leqslant \arg z \leqslant \frac{\pi}{2}$ (2 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	

(1 mark)

4 The roots of the cubic equation

$$z^3 - 2z^2 + pz + 10 = 0$$

are α , β and γ .

It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$.

- (a) Write down the value of $\alpha + \beta + \gamma$.
- **(b) (i)** Explain why $\alpha^3 2\alpha^2 + p\alpha + 10 = 0$. (1 mark)
 - (ii) Hence show that

$$\alpha^2 + \beta^2 + \gamma^2 = p + 13 \tag{4 marks}$$

- (iii) Deduce that p = -3. (2 marks)
- (c) (i) Find the real root α of the cubic equation $z^3 2z^2 3z + 10 = 0$. (2 marks)
 - (ii) Find the values of β and γ . (3 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	

5 (a) Using the identities

$$\cosh^2 t - \sinh^2 t = 1, \quad \tanh t = \frac{\sinh t}{\cosh t} \quad \text{and} \quad \operatorname{sech} t = \frac{1}{\cosh t}$$

show that:

(i)
$$\tanh^2 t + \operatorname{sech}^2 t = 1$$
; (2 marks)

(ii)
$$\frac{\mathrm{d}}{\mathrm{d}t}(\tanh t) = \mathrm{sech}^2 t$$
; (3 marks)

(iii)
$$\frac{d}{dt}(\operatorname{sech} t) = -\operatorname{sech} t \tanh t$$
. (3 marks)

(b) A curve C is given parametrically by

$$x = \operatorname{sech} t$$
, $y = 4 - \tanh t$

(i) Show that the arc length, s, of C between the points where t = 0 and $t = \frac{1}{2} \ln 3$ is given by

$$s = \int_0^{\frac{1}{2}\ln 3} \operatorname{sech} t \, \mathrm{d}t \tag{4 marks}$$

(ii) Using the substitution $u = e^t$, find the exact value of s. (6 marks)

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	

6 (a)	Charry that	1	k+1	2	(2 m aula)
o (a)	Show that	(k+2)!	$\overline{(k+3)!}$	$=\frac{1}{(k+3)!}$.	(2 marks)

(b) Prove by induction that, for all positive integers n,

$$\sum_{r=1}^{n} \frac{r \times 2^{r}}{(r+2)!} = 1 - \frac{2^{n+1}}{(n+2)!}$$
 (6 marks)

QUESTION PART REFERENCE	
PART	
NEI ENENCE	
• • • • • • • • • • • • • • • • • • • •	

- 7 (a) (i) Express each of the numbers $1 + \sqrt{3}i$ and 1 i in the form $re^{i\theta}$, where r > 0.
 - (ii) Hence express

$$(1+\sqrt{3}i)^8(1-i)^5$$

in the form $re^{i\theta}$, where r > 0.

(3 marks)

(b) Solve the equation

$$z^3 = (1 + \sqrt{3}i)^8 (1 - i)^5$$

giving your answers in the form $a\sqrt{2}\,\mathrm{e}^{\mathrm{i}\theta}$, where a is a positive integer and $-\pi < \theta \leqslant \pi$.

QUESTION PART REFERENCE	

