Edexcel Maths FP1

Topic Questions from Papers

Proof by Induction

$\sum_{n=1}^{n}$ 1 n		
$\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$		
$\frac{1}{r-1}$ $r(r+1)$ $n+1$		
	(5)	
	(-)	

$u_1 = 6$ and $u_{n+1} = 6u_n - 5$, for $n \ge 1$.	
Prove by induction that $u_n = 5 \times 6^{n-1} + 1$, for $n \ge 1$.	(5)

8. Prove by induction that, for $n \in \mathbb{Z}^+$,

(a) $f(n) = 5^n + 8n + 3$ is divisible by 4,

(7)

(b)
$$\binom{3}{2} - \binom{2n}{n} = \binom{2n+1}{2n} - \binom{2n}{n-1} = \binom{2n+1}{2n}$$

(7)

1	-

Leave
blank

$u_1 = 2$,	
$u_{n+1} = 5u_n - 4, \qquad n \geqslant 1.$	
Prove by induction that, for $n \in \mathbb{Z}^+$, $u_n = 5^{n-1} + 1$.	
	(4)

8. (a) Prove by induction that, for any positive integer n,

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

(5)

7.	$f(n) = 2^n + 6^n$	
	(a) Show that $f(k+1) = 6f(k) - 4(2^k)$.	(2)
	(b) Hence, or otherwise, prove by induction that, for $n \in \mathbb{Z}^+$, $f(n)$ is divisible by 8.	(3) (4)
		•

Δ	()	D	1	. 1	.1 .
9.	(a)	Prove	by	induction	that

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

(6)

9.	A sequence of numbers $u_1, u_2, u_3, u_4,$. is defined by
----	---	-----------------

$$u_{n+1} = 4u_n + 2, \quad u_1 = 2$$

Prove by induction that, for $n \in \mathbb{Z}^+$,

$$u_n = \frac{2}{3} \left(4^n - 1 \right)$$

(5)

9. Prove by induction, that for $n \in \mathbb{Z}^+$,

(a)
$$\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^n = \begin{pmatrix} 3^n & 0 \\ 3(3^n - 1) & 1 \end{pmatrix}$$
,

(6)

(b) $f(n) = 7^{2n-1} + 5$ is divisible by 12.

(6)

6. (a) Prove by induction	$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$	(5)	ınk

7.	A sequence can	be described	by the	recurrence	formula
----	----------------	--------------	--------	------------	---------

$$u_{n+1} = 2u_n + 1,$$
 $n \ge 1, u_1 = 1$

(a) Find u_2 and u_3 .

(2)

(b) Prove by induction that $u_n = 2^n - 1$

(5)

$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.	
	(6)

8. (a) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} r(r+3) = \frac{1}{3} n(n+1)(n+5)$$
(6)

(b) A sequence of positive integers is defined by

$$u_1 = 1,$$

 $u_{n+1} = u_n + n(3n+1), n \in \mathbb{Z}^+$

Prove by induction that

$$u_n = n^2(n-1) + 1, \qquad n \in \mathbb{Z}^+$$
 (5)

9. (a) A sequence of numbers is defined by

$$u_1 = 8$$

 $u_{n+1} = 4u_n - 9n, \quad n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$,

$$u_n = 4^n + 3n + 1 ag{5}$$

(b) Prove by induction that, for $m \in \mathbb{Z}^+$,

$$\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}^m = \begin{pmatrix} 2m+1 & -4m \\ m & 1-2m \end{pmatrix}$$
 (5)

8. (a) Prove by induction, that for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} r(2r-1) = \frac{1}{6} n(n+1)(4n-1)$$

(6)

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	$(at^2, 2at)$	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$