FP1 Complex Number Questions

(i) Calculate $(2+i\sqrt{5})(\sqrt{5}-i)$. (3 marks) (ii) Hence verify that $\sqrt{5} - i$ is a root of the equation $(2+i\sqrt{5})z = 3z^*$ where z^* is the conjugate of z. (2 marks) The quadratic equation $x^2 + px + q = 0$ in which the coefficients p and q are real, has a complex root $\sqrt{5}-\mathrm{i}\,.$ (i) Write down the other root of the equation. (1 mark) 6 It is given that z = x + iy, where x and y are real numbers. (a) Write down, in terms of x and y, an expression for $(z + i)^*$ where $(z + i)^*$ denotes the complex conjugate of (z + i). (2 marks) Solve the equation (b) $(z+i)^* = 2iz + 1$ giving your answer in the form a + bi. (5 marks) 1 (a) Solve the following equations, giving each root in the form a + bi: (i) $x^2 + 16 = 0$; (2 marks) (ii) $x^2 - 2x + 17 = 0$. (2 marks) (i) Expand $(1+x)^3$. (b) (2 marks) (ii) Express $(1+i)^3$ in the form a+bi. (2 marks) (iii) Hence, or otherwise, verify that x = 1 + i satisfies the equation $x^3 + 2x - 4i = 0$ (2 marks)

- 3 It is given that z = x + iy, where x and y are real numbers.
 - (a) Find, in terms of x and y, the real and imaginary parts of

$$z - 3iz^*$$

where z^* is the complex conjugate of z.

(3 marks)

(b) Find the complex number z such that

$$z - 3iz^* = 16$$

(3 marks)

FP1 Complex Number Answers

5(a)(i)	Full expansion of product	M1		
	Use of $i^2 = -1$	m1		
	$(2+\sqrt{5}i)(\sqrt{5}-i)=3\sqrt{5}+3i$	A1	3	$\sqrt{5}\sqrt{5} = 5$ must be used – Accept not
				fully simplified
(ii)	$z^* = x - iy (= \sqrt{5} + i)$ Hence result	M1		
	Hence result	A1	2	Convincingly shown (AG)
(b)(i)	Other root is $\sqrt{5} + i$	B1	1	
_				

6(a)	$(z+i)^* = x - iy - i$	B2	2	
(b)		M1		$i^2 = -1$ used at some stage
	Equating R and I parts	M1		involving at least 5 terms in all
	x = -2y + 1, -y - 1 = 2x	A1√		ft one sign error in (a)
	z = -1 + i	m1A1√	5	ditto; allow $x = -1$, $y = 1$
	Total		7	

	$\dots = (-2 + 21) + (2 - 21) = 0$	1 111	_	**************************************
	$-(2+2i)\pm(2-2i)=0$	A1	2	convincingly shown (AG)
(iii)	$(1+i)^3 + 2(1+i) - 4i$ = $(-2+2i)+(2-2i)=0$	M1		with attempt to evaluate
(ii)	$(1+i)^3 = 1+3i-3-i = -2+2i$	M1A1	2	M1 if $i^2 = -1$ used
(b)(i)	$(1+x)^3 = 1 + 3x + 3x^2 + x^3$	M1A1	2	M1A0 if one small error
(ii)	Roots are $1 \pm 4i$	M1A1	2	M1 for correct method
1(a)(i)	Roots are $\pm 4i$	M1A1	2	M1 for one correct root or two correct factors

3(a)	Use of $z^* = x - iy$ $z - 3iz^* = x + iy - 3ix - 3y$ R = x - 3y, $I = -3x + y$	M1 m1 A1	3	Condone sign error here Condone inclusion of i in I Allow if correct in (b)
(b)	x-3y = 16, -3x + y = 0 Elimination of x or y $z = -2 - 6i$	M1 m1 A1F	3	Accept $x = -2$, $y = -6$; ft $x + 3y$ for $x - 3y$
	Total		6	