Solution Bank

Review exercise 1

1 **a**
$$
z_1 - z_2
$$

\n $= 4 - 5i - pi$
\n $= 4 - (5 + p)i$
\n**b** $z_1 z_2$
\n $= (4 - 5i)pi$
\n $= 4pi - 5pi^2$
\n $= 4pi + 5p$
\n $= 5p + 4pi$
\n**c** $\frac{z_1}{z_2}$
\n $= \frac{4 - 5i}{pi}$
\n $= \frac{i(4 - 5i)}{-p}$
\n $= \frac{4i + 5}{-p}$
\n $= -\frac{5}{p} - \frac{4}{p}i$
\n2 **a** $z^3 - kz^2 + 3z$
\n $= z(z^2 - kz + 3)$
\nSo if there are z discriminant of

discriminant of $z^2 - kz + 3 < 0$ $\Rightarrow (-k)^2 - 12 < 0$ k^2 < 12 2 imaginary roots, the $-2\sqrt{3} < k < 2\sqrt{3}$

b $z^3 - 2z^2 + 3z = 0$ $\Rightarrow z(z^2-2z+3)=0$ $z = 0, z = \frac{2 \pm \sqrt{-8}}{2}$ \Rightarrow z = 0, z = $1 \pm i \sqrt{2}$ \Rightarrow z = 0, z = $\frac{2\pm\sqrt{-1}}{2}$

Solution Bank

3
\n
$$
z = \frac{5 \pm \sqrt{25 - 52}}{2}
$$
\n
$$
= \frac{5 \pm \sqrt{-27}}{2}
$$
\n
$$
= \frac{5}{2} \pm \frac{3\sqrt{3}}{2}i
$$
\nSo $z_1, z_2 = \frac{5}{2} + \frac{3\sqrt{3}}{2}i, \frac{5}{2} - \frac{3\sqrt{3}}{2}i$

4
$$
(2-i)x - (1+3i)y - 7 = 0
$$

\n $\Rightarrow (2x - y - 7) + (-x - 3y)i = 0$
\n $\Rightarrow 2x - y = 7, x + 3y = 0$
\n $\Rightarrow x = 3, y = -1$

5 **a**
$$
\frac{2+3i}{5+i} \times \frac{5-i}{5-i} = \frac{10-2i+15i+3}{26}
$$

$$
= \frac{13+13i}{26} = \frac{1}{2} + \frac{1}{2}i
$$

$$
= \frac{1}{2}(1+i)
$$

$$
\lambda = \frac{1}{2}
$$

 $(5 + i)(5 - i) = 5² + 1² = 26$ You should practise doing such calculations mentally.

You use the result from part **a** to simplify the working in part **b**.

b
$$
\left(\frac{2+3i}{5+i}\right)^4 = \left[\frac{1}{2}(1+i)\right]^4
$$

$$
= \frac{1}{16}(1+4i+6i^2+4i^3+i^4)
$$

$$
= \frac{1}{16}(1+4i-6-4i+1)
$$

$$
= \frac{1}{16} \times -4 = -\frac{1}{4}, \text{ a real number}
$$

 $(1+i)^4$ is expanded using the binomial expansion $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ $i^3 = i^2 \times i = -1 \times i = -i$ $i^4 = i^2 \times i^2 = -1 \times -1 = 1$

6 $-1+i$ is a root \Rightarrow -1 - i is also a root \Rightarrow $z^2 + 2z + 2$ is a factor \Rightarrow $z^3 + 5z^2 + 8z + 6 = (z^2 + 2z + 2)(z + 3)$ ⇒ $(z+1-i)(z+1+i)$ is a factor \Rightarrow z = -3, -1 ± i

Solution Bank

- **7 a** $f(2-3i) = 0$ \Rightarrow $(2-3i)^3 - 6(2-3i)^2 + k(2-3i) - 26 = 0$ \Rightarrow 8 - 36i - 54 + 27i - 24 + 72i + 54 + 2k - 3ki - 26 = 0 Equating real coefficients $-42 + 2k = 0 \Rightarrow k = 21$ **b** $2 + 3i$ must also be a factor
	- $\Rightarrow (z-2+3i)(z-2-3i) = z^2 4z + 13$ is a factor \Rightarrow $z^3 - 6z^2 + 21z - 26 = (z^2 - 4z + 13)(z - 2)$ \Rightarrow *z* = 2, 2 + 3*i* are the other two factors
- **8 a** $b-3=-1 \implies b=2$ \Rightarrow $z^4 - z^3 - 6z^2 - 20z - 16 = (z^2 - 3z - 4)(z^2 + 2z + 4)$ $-4c = -16 \Rightarrow c = 4$

b
$$
z^4 - z^3 - 6z^2 - 20z - 16 = (z - 4)(z + 1)(z^2 + 2z + 4)
$$

\n $\Rightarrow z = 4, -1, \frac{-2 \pm \sqrt{12}}{2}$
\n $\Rightarrow z = 4, -1, -1 \pm \sqrt{3}i$

9 $(z-1-2i)(z-1+2i)$ must be a factor \Rightarrow $z^2 - 2z + 5$ is a factor \Rightarrow $z^4 - 8z^3 + 27z^2 - 50z + 50$ $(z^2-2z+5)(z^2+kz+10)$ Equating coefficients of z^3 $\Rightarrow (z^2 - 2z + 5)(z^2 - 6z + 10) = 0$ $-2 + k = -8 \Rightarrow k = -6$ $z = 1 \pm 2i, \frac{6 \pm \sqrt{-4}}{2}$ \Rightarrow z = 1 \pm 2i, 3 \pm i \Rightarrow z = 1 ± 2i, $\frac{6 \pm \sqrt{-1}}{2}$

10 a Comparing constant coefficients

$$
\alpha \times \frac{4}{\alpha} \times (\alpha + \frac{4}{\alpha} + 1) = 12
$$

\n
$$
\Rightarrow 4(\alpha + \frac{4}{\alpha} + 1) = 12
$$

\n
$$
\Rightarrow \alpha^2 + 4 + \alpha = 3\alpha
$$

\n
$$
\Rightarrow \alpha^2 - 2\alpha + 4 = 0
$$

\n
$$
\Rightarrow \alpha = 1 \pm \sqrt{3}i
$$

\nSo the roots are $1 \pm \sqrt{3}i, 3$

Solution Bank

10 b f() (3)(1 3i)(1 3i) *zz z z* = − −− −− 2 3 2 (3)(2 4) 5 10 12 5, 10 *p q* ⇒ =− = *z zz zz z* =− −+ =− + −

11 a
$$
\frac{3z-1}{}
$$
 - 4

b

$$
\frac{3z-1}{2-i} = \frac{4}{1+2i}
$$

\n
$$
3z-1 = \frac{8-4i}{1+2i} \times \frac{1-2i}{1-2i}
$$

\n
$$
= \frac{8-16i-4i-8}{5} = \frac{-20i}{5} = -4i
$$

\n
$$
z = \frac{1}{3} - \frac{4}{3}i
$$

\nIm
\n
$$
\int_{0}^{1} e^{zt} \left(\frac{1}{3}, \frac{4}{3}\right)
$$

\nIm
\n
$$
\int_{0}^{1} e^{zt} \left(\frac{1}{3}, \frac{4}{3}\right)
$$

\nRe

 $\left(\frac{1}{3}, -\frac{4}{3}\right)$

You multiply both sides of the equation by $2 - i$.

Then multiply the numerator and denominator by the conjugate complex of the denominator.

You place the points in the Argand diagram which represent conjugate complex numbers symmetrically about the real *x*-axis.

Label the points so it is clear which is the original number (z) and which is the conjugate (z^*) .

$$
|z|^2 = \left(\frac{1}{3}\right)^2 + \left(-\frac{4}{3}\right)^3 = \frac{1}{9} + \frac{16}{9} = \frac{17}{9}
$$

$$
|z| = \frac{\sqrt{17}}{3}
$$

$$
\tan \theta = \frac{\frac{4}{3}}{\frac{1}{3}} = 4 \implies \theta \approx 76^\circ
$$

z is in the fourth quadrant.

$$
\arg z = -76^{\circ}, \text{ to the nearest degree.}
$$

\n
$$
z = \frac{\sqrt{17}}{3} \cos(-76^{\circ}) + i \frac{\sqrt{17}}{3} \sin(-76^{\circ})
$$

\n
$$
z^* = \frac{\sqrt{17}}{3} \cos 76^{\circ} + i \frac{\sqrt{17}}{3} \sin 76^{\circ}
$$

The diagram you have drawn in part **b** shows that *z* is in the fourth quadrant. There is no need to draw it again.

It is always true $|z^*| = |z|$ and arg $z^* = -\arg z$, so you just write down the final answer without further working.

12 a

Further Pure Maths 1

Im $(-9, 17)$

Solution Bank

b
$$
\tan \theta = \frac{17}{9} \Rightarrow \theta = 1.084...
$$

z is in the second quadrant.

 $\arg z = \pi - 1.084... = 2.057...$ $= 2.06$, in radians to 2 d.p.

c

$$
w = \frac{25 + 35i}{z} = \frac{25 + 35i}{-9 + 17i} = \frac{25 + 35i}{-9 + 17i} \times \frac{-9 - 17i}{-9 - 17i}
$$

$$
= \frac{-225 - 425i - 315i + 595}{(-9)^2 + 17^2}
$$

$$
= \frac{370 - 740i}{370} = 1 - 2i
$$

You have to give your answer to 2 decimal places. To do this accurately you must work to at least 3 decimal places. This avoids rounding errors and errors due to premature approximation.

> In this question, the arithmetic gets complicated. Use a calculator to help you with this. However, when you use a calculator, remember to show sufficient working to make your method clear.

Pearson

13 a

$$
z2 = (2 + i)2 = 4 - 4i + i2
$$

= 4 - 4i - 1
= 3 - 4i, as required.

b From part **a**, the square roots of $3 - 4i$ are $2 - i$ and $-2 + i$.

Taking square roots of both sides of the equation $(z + i)^2 = 3 - 4i$

$$
z + i = 2 - i \Rightarrow z = 2 - 2i
$$

\n
$$
z + i = -2 + i \Rightarrow z = -2
$$

\n
$$
z_1 = 2 - 2i
$$
, say, and $z_2 = -2$

The square root of any number *k*, real or complex, is a root of $z^2 = k$. Hence, part **a** shows that one square root of $3 - 4i$ is $2 - i$.

If one square root of $3-4i$ is $2-i$, then the other is $-(2 - i)$.

 z_1 and z_2 could be the other way round but that would make no difference to $|z_1 - z_2|$ or $z_1 - z_2$, the expressions you are asked about in parts **d** and **e**.

Solution Bank

13 c

 $z_1 - z_2$ can be represented on the diagram you drew in part **c** by the vector joining the point representing $z₁$ to the point representing z_2 . The modulus of $z_1 - z_2$ is then just the length of the line joining these two points and this length can be found using coordinate geometry.

d Using the formula

$$
d2 = (x1 - x2)2 + (y1 - y2)2
$$

= (2 - (-2))² + (-2 - 0)²
= 4² + 2² = 20

Hence
$$
|z_1 - z_2| = \sqrt{20} = 2\sqrt{5}
$$

The argument of any number on the negative

imaginary axis is
$$
-\frac{\pi}{2}
$$
 or -90° .

$$
\arg(z_1 + z_2) = -\frac{\pi}{2}
$$

14 a g(x) = x³ - x² - 1

e $z_1 + z_2 = 2 - 2i - 2 = -2i$
Im
O
2

F

 \overrightarrow{Re}

 $g(1.4) = -0.216$ $g(1.5) = 0.125$

There is a change of sign so there must be a root between $x = 1.4$ and $x = 1.5$

b g(1.4655) = -0.00025...
g(1.4665) = 0.00326...
Therefore 1.4655
$$
\lt \alpha \lt 1.4665
$$
 and so α = 1.466 to 2 d.p.

15 a i $3x^2 + 4x - 1 = 0$ has roots α and β The sum of the roots is $\alpha + \beta = -\frac{4}{3}$ The product of the roots is $\alpha\beta = -\frac{1}{3}$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $\left(\frac{4}{2}\right)^2 - 2\left(-\frac{1}{2}\right)$ $=\left(-\frac{4}{3}\right)^{2}-2\left(-\frac{1}{3}\right)$ 22 9 = **ii** $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2 \beta - 3\alpha \beta^2$

$$
= (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)
$$

$$
= \left(-\frac{4}{3}\right)^3 - 3\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)
$$

$$
= -\frac{100}{27}
$$

b Roots are $\frac{\alpha}{\beta^2}$ $\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$ α

Sum of the roots is: α β $\alpha^3 + \beta^3$ $\frac{\alpha}{\beta^2}$

$$
\frac{1}{2} + \frac{\rho}{\alpha^2} = \frac{\alpha + \rho}{\alpha^2 \beta^2}
$$

$$
= \frac{\alpha^3 + \beta^3}{(\alpha \beta)^2}
$$

$$
= \frac{\left(-\frac{100}{27}\right)}{\left(-\frac{1}{3}\right)^2}
$$

$$
= -\frac{100}{3}
$$

Product of the roots is:

$$
\frac{\alpha}{\beta^2} \left(\frac{\beta}{\alpha^2} \right) = \frac{1}{\alpha \beta}
$$

$$
= \frac{1}{\left(-\frac{1}{3} \right)}
$$

$$
= -3
$$

So

$$
x^2 + \frac{100}{3}x - 3 = 0
$$

$$
3x^2 + 100x - 9 = 0
$$

Solution Bank

Solution Bank

- **16 a** $2x^2 + 5x 4 = 0$ has roots α and β The sum of the roots is $\alpha + \beta = -\frac{5}{2}$ The product of the roots is $\alpha\beta = -2$
	- **b** When roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ β

The sum of the roots is:

$$
\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}
$$

$$
= \frac{\left(-\frac{5}{2}\right)}{\left(-2\right)}
$$

$$
= \frac{5}{4}
$$

The product of the roots is:

$$
\frac{1}{\alpha} \left(\frac{1}{\beta} \right) = \frac{1}{\alpha \beta}
$$

$$
= \frac{1}{(-2)}
$$

$$
= -\frac{1}{2}
$$

So

$$
x^2 - \frac{5}{4}x - \frac{1}{2} = 0
$$

$$
4x^2 - 5x - 2 = 0
$$

17 a i $x^2 - 3x + 1 = 0$ has roots α and β The sum of the roots is $\alpha + \beta = 3$ The product of the roots is $\alpha\beta = 1$

$$
\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta
$$

$$
= (3)^{2} - 2(1)
$$

$$
= 7
$$

$$
\begin{aligned}\n\text{ii} \quad &\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2 \beta - 3\alpha \beta^2 \\
&= (\alpha + \beta)^3 - 3\alpha \beta (\alpha + \beta) \\
&= (3)^3 - 3(1)(3) \\
&= 18 \text{ as required} \\
\text{iii} \quad &\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2 \beta^2 \\
&= (\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2 \text{ as required}\n\end{aligned}
$$

Solution Bank

17 b When roots are $\alpha^3 - \beta$ and $\beta^3 - \alpha$ The sum of the roots is: $\alpha^3-\beta+\beta^3-\alpha=\alpha^3+\beta^3-(\alpha+\beta)$ $= 18 - 3$ $=15$ The product of the roots is: $\big(\alpha^3 - \beta \big) \big(\beta^3 - \alpha \big)$ $=$ $\alpha^3 \beta^3 - \alpha^4 - \beta^4 + \alpha \beta^2$ $= (\alpha \beta)^3 - (\alpha^4 + \beta^4) + \alpha \beta$ $=\left(\alpha \beta \right)^3 - \left(\left(\alpha^2 + \beta^2 \right)^2 - 2\left(\alpha \beta\right)^2\right) + \alpha \beta$ $=(1)^3 - ((7)^2 - 2(1)^2) + (1)$ $=-45$ So $x^2 - 15x - 45 = 0$

18 P has coordinates (x, y) Let the distance from (x, y) to $(5, 0)$ be d $|d| = \sqrt{(x-5)^2 + (y-0)^2}$ Let the distance from (x, y) to the line $x = -5$ also be *d* $|d| = \sqrt{(x+5)^2 + (y-y)^2}$ $= x + 5$ Equating both values of *d* gives: $(x-5)^2 + (y-0)^2 = x+5$ $(x-5)^2 + y^2 = (x+5)^2$ $y^2 = (x+5)^2 - (x-5)^2$ $= x^2 + 10x + 25 - x^2 + 10x - 25$ $=20x$

So the locus of *P* is of the form $y^2 = 4ax$ with $a = 5$

19 a
$$
y^2 = 16x
$$

A parabola of the form $y^2 = 4ax$ has the focus at $(a, 0)$ So $y^2 = 16x$ has the focus *S* at (4, 0)

Solution Bank

19 b *P* has coordinates (16, 16) The gradient of *PS* is:

$$
m_{PS} = \frac{y_P - y_S}{x_P - x_S}
$$

= $\frac{16 - 0}{16 - 4}$
= $\frac{4}{3}$
To find the equation of *PS* use
 $y - y_1 = m(x - x_1)$ with $m = \frac{4}{3}$ at (4, 0)
 $y - 0 = \frac{4}{3}(x - 4)$
 $3y = 4x - 16$
 $4x - 3y - 16 = 0$

c
$$
4x-3y-16 = 0
$$
 meets $y^2 = 16x$ at *Q*
\n $y^2 = 16x \Rightarrow x = \frac{y^2}{16}$
\nSubstituting $x = \frac{y^2}{16}$ into $4x-3y-16 = 0$ gives:
\n $4(\frac{y^2}{16})-3y-16 = 0$
\n $y^2-12y-64 = 0$
\n $(y-16)(y+4) = 0$
\n $y = 16$ or $y = -4$
\nWhen $y = -4$, $x = 1$ so *Q* has coordinates (1, -4)

20 a *C* has equations $x = 3t^2$, $y = 6t$ $\stackrel{x}{\rightarrow}$

Solution Bank

20 b $y = x - 72$ meets *C* at *A* and *B* Substituting $x = 3t^2$ and $y = 6t$ into $y = x - 72$ gives: $(t+4)(t-6)=0$ $6t = 3t^2 - 72$ $t^2 - 2t - 24 = 0$ $t = -4$ or $t = 6$ When $t = -4$ $= 3(-4)^2$ $x = 3t^2$ $=48$ $= 6(-4)$ $y = 6t$ $=-24$ So *A* is the point (48, −24) When $t = 6$ $=3(6)^2$ $x = 3t^2$ $=108$ $= 6(6)$ $y = 6t$ $= 36$ So *B* is the point (108, 36) The length of *AB* is given by: $AB = \sqrt{(108 - 48)^2 + (36 - (-24))^2}$ $= \sqrt{60^2 + 60^2}$ $= 60\sqrt{2}$

21 A parabola of the form $y^2 = 4ax$ has the directrix at $x + a = 0$

So the parabola $y^2 = 12x$ has the directrix at $x + 3 = 0$ If *P* and *Q* lie on the parabola at a distance of 8 from the directrix then they both have *x*-coordinates of 5. When $x = 5$ $= 12(5)$ $y^2 = 12x$ $= 60$ $y = \pm 2\sqrt{15}$ So *P* is the point $(5, 2\sqrt{15})$ and *Q* is the point $(5, -2\sqrt{15})$

The distance *PQ* is $4\sqrt{15}$

Solution Bank

22 a $P(2, 8)$ lies on $y^2 = 4ax$ Substituting $(2, 8)$ into $y^2 = 4ax$ gives: $(8)^2 = 4(2)a$ $a=8$ So $y^2 = 32x$

b
$$
y^2 = 32x \Rightarrow y = 4\sqrt{2}x^{\frac{1}{2}}
$$

The tangent of a point to the curve is:

1

$$
\frac{dy}{dx} = 2\sqrt{2x}^{-\frac{1}{2}}
$$

$$
= \frac{2\sqrt{2}}{\sqrt{x}}
$$
At $x = 2$
$$
\frac{dy}{dx} = \frac{2\sqrt{2}}{(\sqrt{2})}
$$

$$
= 2
$$

To find the equation of the tangent use $y - y_1 = m(x - x_1)$ with $m = 2$ at (2, 8) $y-8=2(x-2)$ $y = 2x + 4$

c The tangent cuts the *x*-axis at $y = 0$ Substituting $y = 0$ into $y = 2x + 4$ gives: $(0) = 2x + 4$ $x = -2$ So *X* has coordinates (−2, 0) The tangent cuts the *y*-axis at $x = 0$ Substituting $x = 0$ into $y = 2x + 4$ gives: $y = 2(0) + 4$ $y = 4$ So *Y* has coordinates (0, 4) Area_{oxy} = $\frac{1}{2}$ (2)(4) $_{OXY} = \frac{1}{2}$ $=4$

Solution Bank

23 a *P* has coordinates (3, 4) and lies on $xy = 12$ *Q* has coordinates (−2, 0) The gradient of *l* is

$$
m_1 = \frac{y_p - y_Q}{x_p - x_Q} \\
= \frac{4 - 0}{3 - (-2)} \\
= \frac{4}{5}
$$

To find the equation of *l* use

$$
y - y_1 = m(x - x_1) \text{ with } m = \frac{4}{5} \text{ at } (-2, 0)
$$

$$
y - 0 = \frac{4}{5} (x + 2)
$$

$$
y = \frac{4}{5} x + \frac{8}{5}
$$

b
$$
y = \frac{4}{5}x + \frac{8}{5}
$$
 cuts $xy = 12$ at the point *R*
\nSubstituting $y = \frac{12}{x}$ into $y = \frac{4}{5}x + \frac{8}{5}$ gives:
\n $\frac{12}{x} = \frac{4}{5}x + \frac{8}{5}$
\n $60 = 4x^2 + 8x$
\n $x^2 + 2x - 15 = 0$
\n $(x-3)(x+5) = 0$
\n $x = 3$ or $x = -5$
\nWhen $x = -5$, $y = -\frac{12}{5}$
\nSo *R* has coordinates $\left(-5, -\frac{12}{5}\right)$

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

24 a *P* has coordinates (12, 3) and lies on $xy = 36$ $xy = 36 \Rightarrow y = 36x^{-1}$

The gradient of the tangent to a point on the curve is:

$$
\frac{dy}{dx} = -36x^{-2}
$$

= $-\frac{36}{x^2}$
At $x = 12$
 $\frac{dy}{dx} = -\frac{36}{(12)^2}$
= $-\frac{1}{4}$

To find the equation of the tangent at (12, 3) use

$$
y - y_1 = m(x - x_1) \text{ with } m = -\frac{1}{4} \text{ at (12, 3)}
$$

\n
$$
y - 3 = -\frac{1}{4}(x - 12)
$$

\n
$$
4y - 12 = -x + 12
$$

\n
$$
x + 4y - 24 = 0
$$

b The tangent cuts the *x*-axis at *M* and the *y*-axis at *N* At $M, y = 0$ Substituting $y = 0$ into $x + 4y - 24 = 0$ gives: $x+4(0)-24=0$ $x = 24$ Therefore *M* has coordinates (24, 0) At $N, x = 0$ Substituting $x = 0$ into $x + 4y - 24 = 0$ gives: $(0)+4y-24=0$ $y = 6$ Therefore *N* has coordinates (0, 6) The length of *MN* is given by: $MN = \sqrt{(24-0)^2 + (0-6)^2}$ $= 6\sqrt{17}$

Solution Bank

25 *C* has equations $x = 8t$, $y = \frac{16}{t}$ The line $y = \frac{1}{4}x + 4$ intersects *C* at *A* and *B* Substituting $x = 8t$ and $y = \frac{16}{t}$ into $y = \frac{1}{4}x + 4$ gives: $\left(\frac{16}{1}\right) = \frac{1}{4}(8t) + 4$ $(t-2)(t+4)=0$ $16 = 2t^2 + 4t$ $t^2 + 2t - 8 = 0$ 4 $t = 2 \text{ or } t = -4$ *t* $\left(\frac{16}{t}\right) = \frac{1}{4}(8t) +$ When $t = 2$ $x = 8(2)$ $=16$ and (2) 16 2 $=8$ *y* = So *A* has coordinates (16, 8) When $t = -4$ $x = 8(-4)$ $=-32$ and (-4) 16 $y = \frac{10}{(-4)}$ $=-4$ So *B* has coordinates (−32, −4) The midpoint of *AB* is found using: $\left(\frac{x_4 + x_8}{2}, \frac{y_4 + y_8}{2} \right) = \left(\frac{16 + (-32)}{2}, \frac{8 + (-4)}{2} \right)$ $= (-8, 2)$ $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right) = \left(\frac{16 + (92)}{2}, \frac{6 + (1)}{2}\right)$

So *M* has coordinates (−8, 2)

26 a $P(24t^2, 48t)$ lies on $y^2 = 96x$ and on $xy = 144$ Substituting $(24t^2, 48t)$ into $xy = 144$ gives: $(24t^2)(48t) = 144$ $3 - 144$ 1152 $t^3 =$ 1 2 $t =$

Therefore *P* has coordinates (6, 24)

Solution Bank

26 b
$$
y^2 = 96x \Rightarrow y = 4\sqrt{6x^{\frac{1}{2}}}
$$

The gradient of a tangent to a point on the parabola is:

$$
\frac{dy}{dx} = 2\sqrt{6}x^{-\frac{1}{2}}
$$
\n
$$
= \frac{2\sqrt{6}}{\frac{1}{x^2}}
$$
\nAt $x = 6$
\n
$$
\frac{dy}{dx} = \frac{2\sqrt{6}}{(6)^{\frac{1}{2}}}
$$
\n
$$
= 2
$$
\nTo find the equation of the tangent at (6, 24) use\n
$$
y - y_1 = m(x - x_1) \text{ with } m = 2 \text{ at (6, 24)}
$$
\n
$$
y - 24 = 2(x - 6)
$$
\n
$$
y = 2x + 12
$$

27 a $P(9, 8)$ and $Q(6, 12)$ lie on $xy = 72$ The gradient of *PQ* is found using:

$$
m_{PQ} = \frac{y_P - y_Q}{x_P - x_Q}
$$

= $\frac{8 - 12}{9 - 6}$
= $-\frac{4}{3}$

To find the equation of *PQ:*

$$
y - y_1 = m(x - x_1) \text{ with } m = -\frac{4}{3} \text{ at } (6, 12)
$$

$$
y - 12 = -\frac{4}{3}(x - 6)
$$

$$
3y - 36 = -4x + 24
$$

$$
4x + 3y = 60 \text{ as required}
$$

Solution Bank

27 b The tangent at *R* is parallel to *PQ* therefore the gradient at *R* is $-\frac{4}{3}$ 3 −

 $xy = 72 \Rightarrow y = 72x^{-1}$ The gradient of a tangent to a point on the curve is: $\frac{dy}{dx} = -72x^{-2}$ 2 d 72 $\frac{y}{x} = -72x$ *x x* $=-72x^{-}$ = − Equating both values of the tangent gives: 2 $4x^2 = 216$ 72 4 x^2 3 $x = \pm 3\sqrt{6}$ $-\frac{7}{2} = -$ When $x = 3\sqrt{6}$, $y = 4\sqrt{6}$ When $x = -3\sqrt{6}$, $y = -4\sqrt{6}$ So the possible coordinates of *R* are $(3\sqrt{6}, 4\sqrt{6})$ and $(-3\sqrt{6}, -4\sqrt{6})$

28 a The point $\left(3t, \frac{3}{4}\right)$ $\left(3t, \frac{3}{t}\right)$ lies on *xy* = 9 $xy = 9 \implies y = 9x^{-1}$

The gradient of a tangent to a point on the curve is:

$$
\frac{dy}{dx} = -9x^{-2}
$$

$$
= -\frac{9}{x^2}
$$

At $x = 3t$

$$
\frac{dy}{dx} = -\frac{9}{(3t)^2}
$$

$$
= -\frac{1}{t^2}
$$

To find the equation of the tangent at $\left(3t, \frac{3}{2}\right)$ $\left(3t, \frac{3}{t}\right)$ use: $y - y_1 = m(x - x_1)$ with $m = -\frac{1}{t^2}$ at $\left(3t, \frac{3}{t}\right)$ $\left(3t,\frac{3}{t}\right)$ $y - \frac{3}{t} = -\frac{1}{t^2}(x - 3t)$ $t^2y-3t = -x+3t$ $x + t^2 y = 6t$ as required *t t* $-\frac{3}{x}=-\frac{1}{2}(x-$

Solution Bank

28 b The tangent at $\left(3t, \frac{3}{2}\right)$ $\left(3t, \frac{3}{t}\right)$ cuts the *x*-axis at *A* and the *y*-axis at *B* At $A, y = 0$ Substituting $y = 0$ into $x + t^2 y = 6t$ gives: $x + t^2 (0) = 6t$ $x = 6t$ So *A* has coordinates (6*t*, 0) At $B, x = 0$ Substituting $x = 0$ into $x + t^2 y = 6t$ gives: $(0) + t^2 y = 6t$ $y = \frac{6}{1}$ *t* = So *B* has coordinates $\left(0, \frac{6}{5}\right)$ $\left(0,\frac{6}{t}\right)$ Area_{*OAB*} = $\frac{1}{2} (6t) \left(\frac{6}{4} \right)$ $_{OAB}=\frac{1}{2}(6t)(\frac{6}{t})$ 18 = Therefore the area of triangle *OAB* is constant

29 a The point $(ct, \frac{c}{c})$ $(ct, \frac{c}{t})$ lies on $xy = c^2$ $xy = c^2 \implies y = c^2 x^{-1}$ The gradient of a tangent to a point on the curve is: $\mathrm{d}y = e^{2x-2}$ 2 2 d $\frac{y}{c} = -c^2x$ *x c x* $=-c^2x^-$ = − At $x = c t$ (ct) 2 2 2 d d 1 *y c x ct t* = − = − At $\int ct$ ² $(ct, \frac{c}{t})$ the tangent has gradient $-\frac{1}{t^2}$ *t* $-\frac{1}{2}$ so the normal has gradient t^2 To find the equation of the normal at $\int ct$, $\frac{c}{t}$ $\left(ct, \frac{c}{t}\right)$ use: $y - y_1 = m(x - x_1)$ with $m = t^2$ at $\int ct$, $\frac{c}{t}$ $\left(ct,\frac{c}{t}\right)$ $y - \frac{c}{x} = t^2 (x - ct)$ $t^3x - ty - c(t^4 - 1) = 0$ as required $ty - c = t^3x - ct^4$ *t* $-\frac{c}{-} = t^2 (x -$

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

29 b The normal at *P* meets the line $y = x$ at *G* Substituting $y = x$ into $t^3x - ty - c(t^4 - 1) = 0$ gives:

$$
t3x - t(x) - c(t4 - 1) = 0
$$

$$
tx(t2 - 1) = c(t4 - 1)
$$

$$
x = \frac{c(t4 - 1)}{t(t2 - 1)}
$$

$$
= \frac{c(t2 + 1)}{t}
$$

$$
\int \frac{c(t^2+1)}{t}, \frac{c(t^2+1)}{t}
$$

and since $x = y$, *G* has coordinate

The length of PG is found using:
\n
$$
|PG| = \sqrt{\left(ct - \frac{c(t^2 + 1)}{t}\right)^2 + \left(\frac{c}{t} - \frac{c(t^2 + 1)}{t}\right)^2}
$$
\n
$$
= \sqrt{\left(\frac{ct^2 - c(t^2 + 1)}{t}\right)^2 + \left(\frac{c - c(t^2 + 1)}{t}\right)^2}
$$
\n
$$
= \sqrt{\left(\frac{-c}{t}\right)^2 + \left(-\frac{ct^2}{t}\right)^2}
$$
\n
$$
|PG|^2 = \left(\frac{-c}{t}\right)^2 + (-ct)^2
$$
\n
$$
= \frac{c^2}{t^2} + c^2 t^2
$$
\n
$$
= c^2 \left(\frac{1}{t^2} + t^2\right)
$$
as required

Solution Bank

30 a The point $(ct, \frac{c}{c})$ $(ct, \frac{c}{t})$ lies on $xy = c^2$ $xy = c^2 \implies y = c^2 x^{-1}$ The gradient of a tangent to a point on the curve is: $\frac{dy}{dx} = -c^2x^{-2}$ 2 2 d $\frac{y}{x} = -c^2x$ *x c x* $=-c^2x^-$ = − At $x = ct$ (ct) 2 2 d d *y c x ct* = −

$$
t^{2}
$$

To find the equation of the tangent at $\left(ct, \frac{c}{t}\right)$ use:

$$
y - y_{1} = m(x - x_{1})
$$
 with $m = -\frac{1}{t^{2}}$ at $\left(ct, \frac{c}{t}\right)$

$$
y - \frac{c}{t} = -\frac{1}{t^{2}}(x - ct)
$$

$$
t^{2}y - ct = -x + ct
$$

 $x + t^2 y = 2ct$ as required

b Tangents are drawn from $(-3, 3)$ to $xy = 16$ Substituting (-3, 3) into $x + t^2y = 2ct$ gives:

$$
(-3) + t^2 (3) = 2ct
$$

1

= −

$$
3t^2 - 2ct - 3 = 0
$$

Comparing $xy = 16$ to $xy = c^2$ gives $c = 4$, since the formula for a rectangular hyperbola assumes *c* to be a positive constant

When $c = 4$ the equation of the tangent is:

$$
3t^2 - 2(4)t - 3 = 0
$$

\n
$$
3t^2 - 8t - 3 = 0
$$

\n
$$
(3t+1)(t-3) = 0
$$

\n
$$
t = -\frac{1}{3} \text{ or } t = 3
$$

\nWhen $c = 4$ and $t = -\frac{1}{3}$
\n
$$
\left(ct, \frac{c}{t}\right) = \left(-\frac{4}{3}, -12\right)
$$

\nWhen $c = 4$ and $t = 3$
\n
$$
\left(ct, \frac{c}{t}\right) = \left(12, \frac{4}{3}\right)
$$

\nSo the coordinates of the

ne points where the tangent meets the curve are

 $\frac{4}{2}$, -12 $\left(-\frac{4}{3}, -12\right)$ and $\left(12, \frac{4}{3}\right)$

Solution Bank

31 $P(at^2, 2at)$, $t > 0$ lies on $y^2 = 4ax$ 1 $y^2 = 4ax \Rightarrow y = 2\sqrt{ax^2}$ The gradient of a tangent to a point on the curve is: 1 $\frac{dy}{dx} = \sqrt{ax}^{-\frac{1}{2}}$ 1 2 d $\frac{y}{x} = \sqrt{ax}$ *x a x* $=\sqrt{ax}$ = At $x = at^2$ (at^2) 2 $\frac{1}{2}$ d d 1 $y = \sqrt{a}$ $\begin{cases} x \end{cases}$ (at *t* = =

To find the equation of the tangent use:

 $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at $(at^2, 2at)$ $y - 2at = \frac{1}{x} (x - at^2)$ $ty - 2at^2 = x - at^2$ $x - ty + at^2 = 0$ *t* $-2at = -x -$ The tangent cuts the *x*-axis at *T* where $y = 0$ Substituting *y* = 0 into $x - ty + at^2 = 0$ gives: $x-t(0)+at^2=0$ $x = -at^2$ So *T* has coordinates (−*at*², 0) The length of *PT* is found using: $|PT| = \sqrt{(at^2 - (-at^2))^2 + (2at - 0)^2}$ $= \sqrt{4a^2t^4 + 4a^2t^2}$

$$
=\sqrt{4a^2t^2\left(t^2+1\right)}
$$

$$
=2at\sqrt{\left(t^2+1\right)}
$$

Since the gradient of the tangent at $(at^2, 2at)$ is $\frac{1}{a}$ $\frac{1}{t}$ the gradient of the normal is $-t$ To find the equation of the normal use:

$$
y-y_1 = m(x-x_1) \text{ with } m = -t \text{ at } (at^2, 2at)
$$

\n
$$
y-2at = -t(x-at^2)
$$

\n
$$
y-2at = -tx + at^3
$$

\n
$$
tx + y - 2at - at^3 = 0
$$

\nThe normal cuts the x-axis at N where $y = 0$

Solution Bank

Substituting $y = 0$ into $tx + y - 2at - at^3 = 0$ gives: $x = a(2 + t^2)$ $tx + 0 - 2at - at^3 = 0$ So *N* has coordinates $(a(2 + t^2),0)$ The length of *PN* is found using: $PN = \sqrt{(at^2 - a(2+t^2))}^2 + (2at - 0)^2$ $= 2a\sqrt{(t^2+1)}$ $= \sqrt{4a^2 + 4a^2t^2}$ $(t^2 + 1)$ $(t^2 + 1)$ 2 2 $2at\sqrt{(t^2+1)}$ $2a\sqrt{(t^2+1)}$ $|PT|$ 2*at* \sqrt{t} $|PN|$ $2a\sqrt{t}$ $=\frac{2at\sqrt{(t^2+1)}}{\sqrt{(t^2+1)}}$ +

$$
= t
$$

32 a
$$
P(ap^2, 2ap)
$$
, $p > 0$ lies on $y^2 = 4ax$

$$
y^2 = 4ax \Longrightarrow y = 2\sqrt{ax^2}
$$

The gradient of a tangent to a point on the curve is:

$$
\frac{dy}{dx} = \sqrt{ax}^{-\frac{1}{2}}
$$

$$
= \frac{\sqrt{a}}{x^{\frac{1}{2}}}
$$

$$
At x = ap^2
$$

$$
\frac{dy}{dx} = \frac{\sqrt{a}}{(ap^2)^{\frac{1}{2}}}
$$

$$
= \frac{1}{p}
$$

To find the equation of the tangent use:

$$
y - y_1 = m(x - x_1) \text{ with } m = \frac{1}{p} \text{ at } (ap^2, 2ap)
$$

$$
y - 2ap = \frac{1}{p}(x - ap^2)
$$

$$
py - 2ap^2 = x - ap^2
$$

$$
py = x + ap^2 \text{ as required}
$$

Solution Bank

32 b The tangents at $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ meet at N The tangent at *P* has equation:

$$
py = x + ap^2 \Rightarrow y = \frac{x}{p} + ap
$$

The tangent at *Q* has equation:

$$
qy = x + aq^2 \Rightarrow y = \frac{x}{q} + aq
$$

To find the coordinates of *N*, equate the equations:

$$
\frac{x}{p} + ap = \frac{x}{q} + aq
$$
\n
$$
\frac{x}{p} - \frac{x}{q} = aq - ap
$$
\n
$$
\frac{qx - px}{pq} = a(q - p)
$$
\n
$$
x(q - p) = apq(q - p)
$$
\nAs $p \neq x$, $x = apq$
\nWhen $x = apq$
\n
$$
y = \frac{(apq)}{q} + aq
$$
\n
$$
= a(p + q)
$$

So *N* has coordinates $(apq, a(p+q))$

c Since *N* lies on $y = 4a$ $a(p + q) = 4a$ $p = 4 - q$

Solution Bank

33 a $P(at^2, 2at)$, $t > 0$ lies on $y^2 = 4ax$ 1 $y^2 = 4ax \Rightarrow y = 2\sqrt{ax^2}$ The gradient of a tangent to a point on the curve is: 1 $\frac{dy}{dx} = \sqrt{ax}^{-\frac{1}{2}}$ 1 2 d $\frac{y}{x} = \sqrt{ax}$ *x a x* $=\sqrt{ax}$ = At $x = at^2$ (at^2) 2 $\frac{1}{2}$ d d 1 $y = \sqrt{a}$ $\begin{cases} x \end{cases}$ (at *t* = = At $(at^2, 2at)$ the gradient of the tangent is $\frac{1}{a}$ *t* so the gradient of the normal is −*t* To find the equation of the normal use: $y - y_1 = m(x - x_1)$ with $m = -t$ at $(at^2, 2at)$ $y - 2at = -t(x - at^2)$ $y - 2at = -tx + at^3$ $y + tx = 2at + at^3$ as required

Solution Bank

33 b The normal meets the curve again at *Q*

$$
y + tx = 2at + at^{3} \implies x = -\frac{y}{t} + 2a + at^{2}
$$

Substituting $x = -\frac{y}{t} + 2a + at^{2}$ into $y^{2} = 4ax$ gives:

$$
y^{2} = 4a\left(-\frac{y}{t} + 2a + at^{2}\right)
$$

$$
y^{2} + \frac{4ay}{t} - 8a^{2} - 4a^{2}t^{2} = 0
$$

We know that $y = 2at$ is one solution to this equation.

So, use the fact that $(y - 2at)$ is a factor to rewrite the left-hand side

 $($ $($

$$
(y-2at)\left(y+2at+\frac{4a}{t}\right) = 0
$$

y = 2at or y = -2at - $\frac{4a}{t} = \frac{-2a(t^2+2)}{t}$
When y = $\frac{-2a(t^2+2)}{t}$

Substituting
$$
y = \frac{-2a(t^2 + 2)}{t}
$$
 into $y^2 = 4ax$ gives:

$$
4ax = \left(\frac{-2a(t^2+2)}{t}\right)^2
$$

= $\frac{4a^2(t^2+2)^2}{t^2}$

$$
x = \frac{a(t^2+2)^2}{t^2}
$$

So *Q* has coordinates $\left(\frac{a(t^2+2)^2}{t^2}, \frac{-2a(t^2+2)}{t}\right)$

2

t

Solution Bank

34 a The point $(ct, \frac{c}{c})$ $(ct, \frac{c}{t})$ lies on $xy = c^2$ $xy = c^2 \implies y = c^2 x^{-1}$ The gradient of a tangent to a point on the curve is: $2r^{-2} - \frac{c^2}{2}$ 2 d d $\frac{y}{c} = -c^2 x^{-2} = -\frac{c^2}{c^2}$ *x x* $=-c^2x^{-2}=-$ At $x = ct$ (ct) 2 2 d d 1 $y = c$ *x ct* = − = −

At *x* = *ct* the gradient of the tangent is $-\frac{1}{t^2}$ *t* $-\frac{1}{r^2}$ so the gradient of the normal is t^2

To find the equation of the normal at
$$
\left(ct, \frac{c}{t}\right)
$$
 use:
\n
$$
y - y_1 = m(x - x_1) \text{ with } m = t^2 \text{ at } \left(ct, \frac{c}{t}\right)
$$
\n
$$
y - \frac{c}{t} = t^2 (x - ct)
$$
\n
$$
y - \frac{c}{t} = t^2 x - ct^3
$$
\n
$$
y = t^2 x + \frac{c}{t} - ct^3 \text{ as required}
$$

b The normal meets the equation again at *Q* Substituting $y = t^2x + \frac{c}{2} - ct^3$ *t* $= t²x + \frac{c}{x} - ct³$ into $xy = c²$ gives: $(x-ct)\left(x+\frac{c}{t^3}\right)=0$ $x\left(t^2x+\frac{c}{c}-ct^3\right)=c^2$ $t^2x^2 + \frac{cx}{-ct^3}x - c^2 = 0$ 2 $\left(c\right)$ $\left(c^{2}\right)$ c^{2} $x^{2} + \left(\frac{c}{t^{3}} - ct\right)x - \frac{c^{2}}{t^{2}} = 0$ $x = ct$ or $x = -\frac{c}{t^3}$ $\left(t^2x + \frac{c}{t} - ct^3\right) =$ *t* $+\left(\frac{c}{t^3}-ct\right)x-\frac{c^2}{t^2}=$ $-ct$) $\left(x+\frac{c}{t^3}\right)$ = *t* $+\frac{cx}{-}-ct^3x-c^2=$ $= ct$ or $x = -$ Substituting $x = -\frac{c}{t^3}$ into $xy = c^2$ gives: $2 \rightarrow 3 = 4^3$ 3 $\left(\frac{c}{\lambda}\right)$ *y* = $c^2 \Rightarrow y = -ct$ $\left(-\frac{c}{t^3}\right)y = c^2 \Rightarrow y = -$ So *Q* is the point $\left(-\frac{c}{t^3}, -ct^3\right)$ $\left(-\frac{c}{t^3},-ct^3\right)$

Solution Bank

34 c *P* has coordinates $(ct, \frac{c}{c})$ $(ct, \frac{c}{t})$ and *Q* has coordinates $\left(-\frac{c}{t^3}, -ct^3\right)$ $\left(-\frac{c}{t^3},-ct^3\right)$ The midpoint of *PQ* is found using: $\frac{c}{3}$ $\frac{c}{4}$ + $\left(-ct^{3}\right)$ $\left(\frac{x_p + x_Q}{2}, \frac{y_p + y_Q}{2}\right) = \left(\frac{ct + \left(-\frac{c}{t^3}\right)}{2}, \frac{\frac{c}{t} + \left(-ct^3\right)}{2}\right)$

$$
\begin{pmatrix}\n2 & 2 & 2\n\end{pmatrix}\n\begin{pmatrix}\n2 & 2 & 2\n\end{pmatrix}
$$
\n
$$
= \left(\frac{c(t^4 - 1)}{2t^3}, \frac{c(1 - t^4)}{2t}\right)
$$
\nSo\n
$$
X = \frac{c(t^4 - 1)}{2t^3} \text{ and } Y = \frac{c(1 - t^4)}{2t}
$$
\n
$$
\frac{x}{Y} = \frac{\frac{c(t^4 - 1)}{2t^3}}{\frac{c(1 - t^4)}{2t}}
$$
\n
$$
= \frac{2ct(t^4 - 1)}{2ct^3(1 - t^4)}
$$

$$
=-\frac{1}{t^2}
$$
 as required

35 a The point $P \left(cp, \frac{c}{c} \right)$ $\left(cp, \frac{c}{p} \right)$ lies on $xy = c^2$ $xy = c^2 \implies y = c^2 x^{-1}$

The gradient of a tangent to a point on the curve is:

$$
\frac{dy}{dx} = -c^2 x^{-2}
$$

$$
= -\frac{c^2}{x^2}
$$
At $x = cp$
$$
\frac{dy}{dx} = -\frac{c^2}{(cp)^2}
$$

$$
= -\frac{1}{p^2}
$$

To find the equation of the tangent at $\int cp \frac{c}{r}$ $\left(cp, \frac{c}{p}\right)$ use:

$$
y-y_1 = m(x-x_1) \text{ with } m = -\frac{1}{p^2} \text{ at } \left(cp, \frac{c}{p} \right)
$$

$$
y - \frac{c}{p} = -\frac{1}{p^2} (x - cp)
$$

$$
p^2 y - pc = -x + cp
$$

$$
p^2 y = -x + 2cp \text{ as required}
$$

Solution Bank

35 b The tangents at
$$
P\left (cp, \frac{c}{p} \right)
$$
 and $Q\left (cq, \frac{c}{q} \right)$ meet at *N*
The tangent at *P* has equation:
 $p^2y = -x + 2cp \Rightarrow x = 2cp - p^2y$
The tangent at *Q* has equation:
 $q^2y = -x + 2cq \Rightarrow x = 2cq - q^2y$
To find the coordinates of *N*, equate the equations:
 $2cp - p^2y = 2cq - q^2y$

$$
y(q2 - p2) = 2c(q - p)
$$

\n
$$
y = 2c \frac{(q - p)}{(q2 - p2)} = 2c \frac{(q - p)}{(q - p)(q + p)}
$$

\n
$$
y = \frac{2c}{p + q}
$$
 as required

c *P* has coordinates
$$
\left(cp, \frac{c}{p} \right)
$$
 and *Q* has coordinates $\left(cq, \frac{c}{q} \right)$

The gradient of *PQ* is found using:

$$
m_{PQ} = \frac{y_P - y_Q}{x_P - x_Q}
$$

$$
= \frac{\frac{c}{p} - \frac{c}{q}}{cp - cq}
$$

$$
= \frac{q - p}{pq(p - q)}
$$

$$
= -\frac{1}{pq}
$$

N has *y*-coordinate $\frac{2c}{ }$ $p + q$. Substituting this into the equation $x = 2cp - p^2y$ gives:

$$
x = 2cp - p2 \left(\frac{2c}{p+q}\right)
$$

$$
x = \frac{2cp(p+q) - 2cp^{2}}{p+q}
$$

$$
= \frac{2cpq}{p+q}
$$

O has coordinates (0, 0) and *N* has coordinates $\left(\frac{2cpq}{r}, \frac{2c}{r} \right)$ $\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$

Solution Bank

The gradient of *ON* is found using:

$$
m_{ON} = \frac{y_N - y_O}{x_N - x_O}
$$

$$
= \frac{2c}{\frac{p+q}{p+q}}
$$

$$
= \frac{2c(p+q)}{2cpq(p+q)}
$$

$$
= \frac{1}{pq}
$$

Since m_{PQ} and m_{ON} are perpendicular

$$
m_{PQ} \times m_{ON} = -1
$$

$$
-\frac{1}{pq} \times \frac{1}{pq} = -1
$$

$$
p^2 q^2 = 1
$$

36 a $P(ap^2, 2ap)$, $p \ne 0$ lies on $y^2 = 4ax$ $\overline{1}$

$$
y^2 = 4ax \Longrightarrow y = 2\sqrt{ax^2}
$$

The gradient of a tangent to a point on the curve is:

$$
\frac{dy}{dx} = \sqrt{ax}^{-\frac{1}{2}}
$$
\n
$$
= \frac{\sqrt{a}}{x^{\frac{1}{2}}}
$$
\nAt $x = ap^2$
\n
$$
\frac{dy}{dx} = \frac{\sqrt{a}}{(ap^2)^{\frac{1}{2}}}
$$
\n
$$
= \frac{1}{p}
$$
\nAt $x = ap^2$ the tangent has gradient $\frac{1}{p}$ so the normal
\nTo find the equation of the normal use:

$$
y-y_1 = m(x-x_1) \text{ with } m = -p \text{ at } (ap^2, 2ap)
$$

$$
y-2ap = -p(x-ap^2)
$$

$$
y-2ap = -px+ap^3
$$

$$
y+px = 2ap+ap^3 \text{ as required}
$$

has gradient $-p$

Solution Bank

36 b The normal meets the curve again at $Q(aq^2, 2aq)$ Substituting $(aq^2, 2aq)$ into $y + px = 2ap + ap^3$ gives: $(2aq) + p(aq^2) = 2ap + ap^3$ $apq^2 + 2aq - ap(2+p^2) = 0$ $q^2 + \frac{2q}{q} - (2 + p^2) = 0$ *p* $+\frac{24}{-}(2+p^2)$ =

We know that $q = p$ would give one solution to this equation. So, use the fact that $(q - p)$ is a factor to rewrite the left-hand side:

$$
(q-p)\left(q+\left(p+\frac{2}{p}\right)\right)=0
$$

$$
q=p \text{ or } q=-p-\frac{2}{p}
$$

Since $q \neq p$

$$
q=-p-\frac{2}{p}
$$

c The midpoint of *PQ* is $\left(\frac{125}{18}a, -3a\right)$

P has coordinates $P(qp^2, 2ap)$ and *Q* has coordinates $P(qq^2, 2aq)$ Find the midpoint of *PQ* using:

$$
\left(\frac{x_p + x_Q}{2}, \frac{y_p + y_Q}{2}\right) = \left(\frac{ap^2 + aq^2}{2}, \frac{2ap + 2aq}{2}\right) \\
= \left(\frac{a(p^2 + q^2)}{2}, a(p+q)\right)
$$

Comparing
$$
\left(\frac{125a}{18}, -3a\right)
$$
 to $\left(\frac{a\left(2p^2+4+\frac{4}{p^2}\right)}{2}, -\frac{2a}{p}\right)$

$$
-3a = a(p+q)
$$

\n
$$
p+q = -3
$$

\nSince $q = -p - \frac{2}{p}$, $p + \left(-p - \frac{2}{p}\right) = -3$
\n
$$
p = \frac{2}{3}
$$

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

- **37 a** A parabola of the form $y^2 = 4ax$ has the focus at $(a, 0)$ So $y^2 = 32x$ has the focus *S* at (8, 0)
	- **b** A parabola of the form $y^2 = 4ax$ has the directrix at $x + a = 0$ So $y^2 = 32x$ has the directrix at $x + 8 = 0$
	- **c** *P* has coordinates (2, 8) and *Q* has coordinates (32, −32) The gradient of *PQ* is found using:

$$
m_{PQ} = \frac{y_P - y_Q}{x_P - x_Q}
$$

=
$$
\frac{8 - (-32)}{2 - 32}
$$

=
$$
-\frac{4}{3}
$$

To find the equation of *PQ* use:

$$
y - y_1 = m(x - x_1) \text{ with } m = -\frac{4}{3} \text{ at } (2, 8)
$$

\n
$$
y - 8 = -\frac{4}{3}(x - 2)
$$

\n
$$
3y - 24 = -4x + 8
$$

\n
$$
4x + 3y - 32 = 0
$$

\nIf S lies on $4x + 3y - 32 = 0$ then (8, 0) will satisfy $4x + 3y - 32 = 0$
\nSubstituting (8, 0) into $4x + 3y - 32 = 0$ gives:
\n $4(8) + 3(0) - 32 = 0$
\n $0 = 0$
\nSo S lies on PQ

Solution Bank

37 d
$$
y^2 = 32x \Rightarrow y = \pm 4\sqrt{2}x^{\frac{1}{2}}
$$

The gradient of a tangent to point on the curve is:

$$
\frac{dy}{dx} = \pm 2\sqrt{2x}^{-\frac{1}{2}}
$$

$$
= \pm \frac{2\sqrt{2}}{x^{\frac{1}{2}}}
$$

$$
At P, x = 2
$$

$$
\frac{dy}{dx} = \frac{2\sqrt{2}}{(2)^{\frac{1}{2}}}
$$

$$
= 2
$$

To find the equation of the tangent at *P* use: $y - y_1 = m(x - x_1)$ with $m = 2$ at (2, 8) $y-8=2(x-2)$ $y = 2x + 4$ At $Q, x = 32$

Since *Q* is the point (32, –32), use $\frac{dy}{dx} = -\frac{2V}{1}$ 2 $dy = 2\sqrt{2}$ d *y x x* $=-\frac{2VZ}{1}$

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\sqrt{2}}{(32)^{\frac{1}{2}}}
$$

$$
= -\frac{1}{2}
$$

To find the equation of the tangent at *Q* use:

$$
y - y_1 = m(x - x_1) \text{ with } m = \frac{1}{2} \text{ at } (32, -32)
$$

$$
y + 32 = -\frac{1}{2}(x - 32)
$$

$$
y = -\frac{1}{2}x - 16
$$

Equate the tangents to find the point where they meet:

$$
2x+4=-\frac{1}{2}x-16
$$

4x+8=-x-32
5x=-40
x=-8
Therefore *D* lies on the directrix

Solution Bank

Challenge

1
$$
x^2 + 2ix + 5 = 0
$$

\n $(x+i)^2 - i^2 + 5 = 0$
\n $(x+i)^2 = -6$
\n $x+i = \pm i\sqrt{6}$
\n $x = i \pm i\sqrt{6}$
\n $x = i(1 \pm \sqrt{6})$

2 $ax^2 + bx + c = 0$ has roots α and β $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2$ $\alpha^4 + \beta^4 = -\frac{79}{16}$ and $\alpha^2 + \beta^2 = -\frac{7}{4}$ Substituting gives: $(\alpha \beta)$ $2(\alpha\beta)^2 = \frac{49}{16} + \frac{79}{16}$ $\frac{79}{16} = \left(-\frac{7}{4}\right)^2 - 2(\alpha\beta)^2$ $16 \t 4$ 16 16 $\alpha\beta = \pm 2$ αβ $(\alpha\beta)^2 = \frac{12}{16} +$ $-\frac{79}{16} = \left(-\frac{7}{4}\right)^2$ Since $\alpha\beta > 0$, $\alpha\beta = 2$ $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$ $\alpha^2 + \beta^2 = -\frac{7}{4}$ and $\alpha\beta = 2$ Substituting gives: $(\alpha + \beta)^2 = -\frac{7}{4} + 2(2)$ 4 9 4 $(\alpha + \beta)^2 = -\frac{1}{4} +$ = $\alpha + \beta = \pm \frac{3}{2}$

The equation is: $2x^2 - 3x + 4 = 0$ or $2x^2 + 3x + 4 = 0$