Chapter review 8

- 1 Let $f(n) = 9^n 1$, where $n \in \mathbb{Z}^+$.
 - \therefore f(1) = 9¹ 1 = 8, which is divisible by 8.
 - \therefore f(*n*) is divisible by 8 when *n* = 1.
 - Assume that for n = k,
 - $f(k) = 9^k 1$ is divisible by 8 for $k \in \mathbb{Z}^+$.

$$f(k+1) = 9^{k+1} - 1$$

= 9^k.9¹ - 1
= 9(9^k) - 1
$$f(k+1) - f(k) = [9(9^{k}) - 1] - [9^{k} - 1]$$

= 9(9^k) - 1 - 9^k + 1
= 8(9^k)

$$\therefore \mathbf{f}(k+1) = \mathbf{f}(k) + 8(9^k)$$

As both f(k) and $8(9^k)$ are divisible by 8 then the sum of these two terms must also be divisible by 8. Therefore f(n) is divisible by 8 when n = k + 1.

Solution Bank

Pearson

If f (n) is divisible by 8 when n = k, then it has been shown that f (n) is also divisible by 8 when n = k + 1. As f (n) is divisible by 8 when n = 1, f (n) is also divisible by 8 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

2 **a**
$$\mathbf{B}^{2} = \mathbf{B}\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1+0 & 0+0 \\ 0+0 & 0+9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}$$

 $\mathbf{B}^{3} = \mathbf{B}^{2}\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1+0 & 0+0 \\ 0+0 & 0+27 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 27 \end{pmatrix}$
b As $\mathbf{B}^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 3^{2} \end{pmatrix}$ and $\mathbf{B}^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 3^{3} \end{pmatrix}$, we suggest that $\mathbf{B}^{n} = \begin{pmatrix} 1 & 0 \\ 0 & 3^{n} \end{pmatrix}$.
c $n = 1$; LHS = $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}^{1} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$
RHS = $\begin{pmatrix} 1 & 0 \\ 0 & 3^{1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$

As LHS = RHS, the matrix equation is true for n = 1. Assume that the matrix equation is true for n = k.

i.e. $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}^k = \begin{pmatrix} 1 & 0 \\ 0 & 3^k \end{pmatrix}$

Solution Bank

With n = k + 1 the matrix equation becomes

Therefore the matrix is true when n = k + 1.

If the matrix equation is true for n = k, then it is shown to be true for n = k + 1. As the matrix equation is true for n = 1, it is now also true for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

3 Basis:
$$n = 1$$
: LHS = 3 × 1 + 4 = 7; RHS = $\frac{1}{2} \times 1(3 \times 1 + 11) = 7$

Assumption:

$$\sum_{r=1}^{k} (3r+4) = \frac{1}{2}k(3k+11)$$

Induction:

$$\sum_{r=1}^{k+1} (3r+4) = \sum_{r=1}^{k} (3r+4) + 3(k+1) + 4$$
$$= \frac{1}{2}k(3k+11) + 3(k+1) + 4 = \frac{1}{2}(3k^2 + 17k + 14)$$
$$= \frac{1}{2}(k+1)(3(k+1) + 11)$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

Solution Bank

4 a
$$n = 1$$
: LHS = $\begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}^1 = \begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}$
= $\begin{pmatrix} 8(1) + 1 & 16(1) \\ -4(1) & 1 - 8(1) \end{pmatrix} = \begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}$

As LHS = RHS, the matrix equation is true for n = 1. Assume that the matrix equation is true for n = k.

i.e.
$$\begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}^k = \begin{pmatrix} 8k+1 & 16k \\ -4k & 1-8k \end{pmatrix}$$
.

With n = k + 1 the matrix equation becomes

$$\begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}^{k+1} = \begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}^k \begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}$$
$$= \begin{pmatrix} 8k+1 & 16k \\ -4k & 1-8k \end{pmatrix} \begin{pmatrix} 9 & 16 \\ -4 & -7 \end{pmatrix}$$
$$= \begin{pmatrix} 72k+9-64k & 128k+16-112k \\ -36k-4+32k & -64k-7+56k \end{pmatrix}$$
$$= \begin{pmatrix} 8k+9 & 16k+16 \\ -4k-4 & -8k-7 \end{pmatrix}$$
$$= \begin{pmatrix} 8(k+1)+1 & 16(k+1) \\ -4(k+1) & 1-8(k+1) \end{pmatrix}$$

Therefore the matrix equation is true when n = k + 1.

2

If the matrix equation is true for n = k, then it is shown to be true for n = k + 1. As the matrix equation is true for n = 1, it is now also true for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

b det(
$$\mathbf{A}^n$$
) = (8n+1)(1-8n) - -64n²
= 8n - 64n² + 1 - 8n + 64n²
= 1
$$\mathbf{B} = (\mathbf{A}^n)^{-1} = \frac{1}{1} \begin{pmatrix} 1 - 8n & -16n \\ 4n & 8n + 1 \end{pmatrix}$$
(1 - 8n - 16n)

$$\operatorname{So} \mathbf{B} = \begin{pmatrix} 1 - 8n & -16n \\ 4n & 8n+1 \end{pmatrix}$$

Solution Bank

5 a $f(n+1) = 5^{2(n+1)-1} + 1$ $= 5^{2n+2-1} + 1$ $= 5^{2n-1} \cdot 5^{2} + 1$ $= 24(5^{2n-1}) + 1$ $\therefore f(n+1) - f(n) = [25(5^{2n-1}) + 1] - [5^{2n-1} + 1]$ $= 25(5^{2n-1}) + 1 - (5^{2n-1}) - 1$ $= 24(5^{2n-1})$ Therefore, $\mu = 24$.

b $f(n) = 5^{2n-1} + 1$, where $n \in \mathbb{Z}^+$.

: $f(1) = 5^{2(1)-1} + 1 = 5^1 + 1 = 6$, which is divisible by 6.

 \therefore f(*n*) is divisible by 6 when n = 1.

Assume that for n = k,

 $f(k) = 5^{2k-1} + 1$ is divisible by 6 for $k \in \mathbb{Z}^+$.

Using **a**, $f(k+1) - f(k) = 24(5^{2k-1})$

 \therefore f(k+1) = f(k) + 24(5^{2k-1})

As both f(k) and $24(5^{2k-1})$ are divisible by 6 then the sum of these two terms must also be divisible by 6. Therefore f(n) is divisible by 6 when n = k + 1.

If f(n) is divisible by 6 when n = k, then it has been shown that f(n) is also divisible by 6 when n = k + 1. As f(n) is divisible by 6 when n = 1, f(n) is also divisible by 6 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

- 6 Let $f(n) = 7^n + 4^n + 1$, where $n \in \mathbb{Z}^+$.
 - : $f(1) = 7^1 + 4^1 + 1 = 7 + 4 + 1 = 12$, which is divisible by 6.
 - \therefore f(*n*) is divisible by 6 when n = 1.

Assume that for n = k,

 $f(k) = 7^k + 4^k + 1$ is divisible by 6 for $k \in \mathbb{Z}^+$.

$$\therefore f(k+1) = 7^{k+1} + 4^{k+1} + 1$$

= 7^k × 7¹ + 4^k × 4¹ + 1
= 7(7^k) + 4(4^k) + 1
$$\therefore f(k+1) - f(k) = [7(7^{k}) + 4(4^{k}) + 1] - [7^{k} + 4^{k} + 1]$$

= 7(7^k) + 4(4^k) + 1 - 7^k - 4^k - 1
= 6(7^k) + 3(4^k)
= 6(7^k) + 3(4^{k-1}).4¹
= 6(7^k) + 12(4^{k-1})
= 6[7^k + 2(4)^{k-1}]

:
$$f(k+1) = f(k) + 6[7^k + 2(4)^{k-1}]$$

As both f(k) and $6[7^k + 2(4)^{k-1}]$ are divisible by 6 then the sum of these two terms must also be divisible by 6.

Therefore f(n) is divisible by 6 when n = k + 1.

If f(n) is divisible by 6 when n = k, then it has been shown that f(n) is also divisible by 6 when n = k + 1. As f(n) is divisible by 6 when n = 1, f(n) is also divisible by 6 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

7 Basis:
$$n = 1$$
: LHS = 1 × 5 = 5; RHS = $\frac{1}{6}$ × 1 × 2 × (2 + 13) = 5
Assumption: $\sum_{r=1}^{k} r(r+4) = \frac{1}{6}k(k+1)(2k+13)$
Induction:
 $\sum_{r=1}^{k+1} r(r+4) = \sum_{r=1}^{k} r(r+4) + (k+1)(k+5)$
 $= \frac{1}{6}k(k+1)(2k+13) + (k+1)(k+5)$
 $= \frac{1}{6}(2k^3 + 21k^2 + 49k + 30) = \frac{1}{6}(k+1)(k+2)(2(k+1)+13)$

So if the statement holds for n = k, it holds for n = k + 1. Conclusion: The statement holds for all $n \in \mathbb{Z}^+$.

Solution Bank

8 a <u>Basis</u>: n = 1: LHS = 1 + 4 = 5; RHS = $\frac{1}{3} \times 1 \times 3 \times 5 = 5$ <u>Assumption</u>: $\sum_{k=1}^{2k} r^2 = \frac{1}{3}k(2k+1)(4k+1)$

Induction:

$$\sum_{r=1}^{2^{(k+1)}} r^2 = \sum_{r=1}^{2^k} r^2 + (2k+1)^2 + (2k+2)^2$$

= $\frac{1}{3}k(2k+1)(4k+1) + (2k+1)^2 + (2k+2)^2$
= $\frac{1}{3}(8k^3 + 30k^2 + 37k + 15)$
= $\frac{1}{3}(k+1)(2(k+1)+1)(4(k+1)+1)$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

b Using **a** and the formula for $\sum_{r=1}^{n} r^2$ $\frac{1}{6} \times 2n(2n+1)(4n+1) = \frac{1}{6}kn(n+1)(2n+1)$ 2n(2n+1) + (4n+1) = kn(n+1)(2n+1) $16n^3 + 12n^3 + 12n^2 + 2n = k(2n^3 + 3n^2)$ $\Rightarrow k = \frac{2n(8n^2 + 6n + 1)}{n(2n^2 + 3n + 1)} = \frac{2(2n+1)(4n+1)}{(2n+1)(n+1)} = \frac{8n+2}{n+1}$ $\Rightarrow kn + k = 8n + 2 \Rightarrow n(k-8) = 2 - k \Rightarrow n = \frac{2-k}{k-8}$

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

9 <u>Basis:</u> $u_n = \frac{3^n - 1}{2} \Rightarrow n = 1$: $u_1 = \frac{3^1 - 1}{2} = 1$ as given For n = 2: $u_2 = \frac{3^2 - 1}{2} = 4$ from the general statement $u_2 = 3u_1 + 1 = 3 \times 1 + 1 = 4$ from the recurrence relation.

Therefore, u_n is true for n = 1 and n = 2.

<u>Assumption</u>: Assume u_n is true for n = k, where $k \in \mathbb{Z}^+$

$$u_{k} = \frac{3^{k} - 1}{2}$$
Induction: Using the recurrence relation
$$u_{k+1} = 3u_{k} + 1$$

$$= 3\left(\frac{3^{k} - 1}{2}\right) + 1$$

$$= \frac{3^{k+1}}{2} - \frac{3}{2} + 1$$

$$= \frac{3^{k+1} - 1}{2}$$

This is the same expression that the general statement gives for u_{k+1} .

Therefore the general statement, u_n , is true for n = k + 1.

<u>Conclusion</u>: If u_n is true when n = k, then it has been shown that u_n is also true when n = k + 1. As u_n is true for n = 1 and n = 2 then u_n is true for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

$$\begin{array}{ll} \mathbf{0} \ \mathbf{a} & u_{n+1} = \frac{3u_n - 1}{4} \\ & u_1 = 2 \\ & u_2 = \frac{3(2) - 1}{4} = \frac{5}{4} \\ & u_3 = \frac{3\left(\frac{5}{4}\right) - 1}{4} = \frac{11}{16} \\ & u_4 = \frac{3\left(\frac{11}{16}\right) - 1}{4} = \frac{17}{64} \\ & u_5 = \frac{3\left(\frac{17}{64}\right) - 1}{4} = -\frac{13}{256} \end{array}$$

1

Solution Bank

10 b <u>Basis:</u> $u_n = 4\left(\frac{3}{4}\right)^n - 1 \Rightarrow n = 1: u_1 = 4\left(\frac{3}{4}\right)^1 - 1 = 2$ as given $n = 2: u_2 = 4\left(\frac{3}{4}\right)^2 - 1 = \frac{5}{4}$ from the general statement $u_2 = \frac{3u_1 - 1}{4} = \frac{3(2) - 1}{4} = \frac{5}{4}$ from the recurrence relation. Therefore, u_n is true for n = 1 and n = 2.

11

<u>Assumption</u>: Assume u_n is true for n = k, where $k \in \mathbb{Z}^+$

$$u_k = 4\left(\frac{3}{4}\right)^k - 1$$

Induction: Using the recurrence relation

$$u_{k+1} = \frac{3u_k - 1}{4}$$

$$= \frac{3\left[4\left(\frac{3}{4}\right)^k - 1\right] - 1}{4}$$

$$= \frac{12\left(\frac{3}{4}\right)^k - 3 - 1}{4}$$

$$= \frac{12\left(\frac{3}{4}\right)^k}{4} + \frac{-3 - 1}{4}$$

$$= 3\left(\frac{3}{4}\right)^k - 1$$

$$= \left(4 \times \frac{3}{4}\right)\left(\frac{3}{4}\right)^k - 1$$

$$= 4\left(\frac{3}{4}\right)^{k+1} - 1$$

This is the same expression that the general statement gives for u_{k+1} . Therefore the general statement, u_n , is true for n = k + 1.

<u>Conclusion</u>: If u_n is true when n = k, then it has been shown that u_n is also true when n = k + 1. As u_n is true for n = 1 and n = 2 then u_n is true for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Further Pure Maths 1 Solution Bank

11 a <u>Basis:</u> n = 1: LHS = RHS = $\begin{pmatrix} 2c & 1 \\ 0 & c \end{pmatrix}$

Assumption:

$$\mathbf{M}^{k} = \mathbf{c}^{k} \begin{pmatrix} 2^{k} & \frac{2^{k} - 1}{c} \\ 0 & 1 \end{pmatrix}$$

Induction:

$$\mathbf{M}^{k+1} = \mathbf{M}^{k} \begin{pmatrix} 2c & 1\\ 0 & c \end{pmatrix}$$
$$= c^{k} \begin{pmatrix} 2^{k} & \frac{2^{k} - 1}{c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2c & 1\\ 0 & c \end{pmatrix} = c^{k+1} \begin{pmatrix} 2^{k} & \frac{2^{k} - 1}{c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & \frac{1}{c} \\ 0 & 1 \end{pmatrix}$$
$$= c^{k+1} \begin{pmatrix} 2^{k+1} & \frac{2^{k} + 2^{k} - 1}{c} \\ 0 & 1 \end{pmatrix} = c^{k+1} \begin{pmatrix} 2^{k+1} & \frac{2^{k+1} - 1}{c} \\ 0 & 1 \end{pmatrix}$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

b Consider n = 1: det $\mathbf{M} = 50 \Rightarrow 2c^2 = 50$ So c = 5, since c is positive.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Pearson

Solution Bank

Challenge

a Basis:
$$n = 1$$
: LHS = RHS = $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Assumption:

$$\mathbf{M}^{k} = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix}$$

Induction:

$$\mathbf{M}^{k+1} = \mathbf{M}^{k} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos k\theta & \cos\theta & -\sin k\theta \sin\theta & -\cos\theta \sin\theta & -\sin\theta \cos\theta \\ \sin k\theta & \cos\theta & +\cos k\theta \sin\theta & -\sin k\theta \sin\theta & +\cos k\theta \cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos((k+1)\theta) & -\sin((k+1)\theta) \\ \sin((k+1)\theta) & \cos((k+1)\theta) \end{pmatrix}$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

b The matrix M represents a rotation through angle θ , and so \mathbf{M}^n represents a rotation through angle $n\theta$.