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As LHS = RHS, the matrix equation is true for n = 1.
Assume that the matrix equation is true for n = k.
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With n = £+ 1 the matrix equation becomes
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Therefore the matrix equation is true when n = k£ + 1.
If the matrix equation is true for n = k then it is shown to be true for n = k + 1. As the matrix

equation is true for n =1 it is now also true for all » > 1 and n € Z*, by mathematical induction.
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As LHS = RHS, the matrix equation is true for n = 1.
Assume that the matrix equation is true for n = k.
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Therefore the matrix equation is true when n =k + 1.
If the matrix equation is true for n = k then it is shown to be true for n = k + 1. As the matrix

equation is true for n = 1, it is now also true for all » > 1 and n € Z" by mathematical induction.
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As LHS=RHS, the matrix equation is true for n = 1.
Assume that the matrix equation is true for n = k.
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With n = £+ 1 the matrix equation becomes
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Therefore the matrix equation is true when n =k + 1.

If the matrix equation is true for n = & then it is shown to be true for n = k£ + 1. As the matrix
equation is true for n = 1, it is now also true for all » > 1 and n € Z" by mathematical induction.
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As LHS = RHS, the matrix equation is true for n = 1.
Assume that the matrix equation is true for n = k.
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With n = £+ 1 the matrix equation becomes
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Therefore the matrix equation is true when n =k + 1.
If the matrix equation is true for n = £, then it is shown to be true for n =k + 1. As the matrix

equation is true for n = 1, it is now also true for all » > 1 and n € Z" by mathematical induction.
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Induction: With n = k + 1 the matrix equation becomes

A
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Assumption: M¥= [

0 1
So if the statement holds for n = £, it holds for n = k+ 1.
Conclusion: The statement holds for all n e Z*.
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