Solution Bank

Exercise 8B

1 a Let $f(n) = 8^n - 1$, where $n \in \mathbb{Z}^+$. \therefore f(1) = 8¹ -1 = 7, which is divisible by 7. \therefore f(*n*) is divisible by 7 when $n = 1$. Assume that for $n = k$, $f(k) = 8^k - 1$ is divisible by 7 for $k \in \mathbb{Z}^+$. \therefore $f(k+1) = 8^{k+1} - 1$ $= 8^k.8^1 - 1$ $= 8(8^k) - 1$ \therefore f(k+1)-f(k) = [8(8^k)-1]-[8^k-1] $= 8(8^k) - 1 - 8^k + 1$ $=7(8^k)$: $f(k+1) = f(k) + 7(8^k)$

As both $f(k)$ and $7(8^k)$ are divisible by 7 then the sum of these two terms must also be divisible by 7. Therefore $f(n)$ is divisible by 7 when $n = 1$.

If $f(n)$ is divisible by 7 when $n = k$, then it has been shown that $f(n)$ is also divisible by 7 when $n = k + 1$. As f(*n*) is divisible by 7 when $n = 1$, f(*n*) is also divisible by 7 for all $n \ge 1$ and $n \in \mathbb{Z}$ + by mathematical induction.

b Let
$$
f(n) = 3^{2n} - 1
$$
, where $n \in \mathbb{Z}^+$.

$$
\therefore f(1) = 3^{2(1)} - 1 = 9 - 1 = 8, \text{ which is divisible by 8.}
$$

\n
$$
\therefore f(n) \text{ is divisible by 8 when } n = 1.
$$

\nAssume that for $n = k$,
\n
$$
f(k) = 3^{2k} - 1 \text{ is divisible by 8 for } k \in \mathbb{Z}^+.
$$

\n
$$
\therefore f(k+1) = 3^{2(k+1)} - 1
$$

\n
$$
= 3^{2k+2} - 1
$$

\n
$$
= 3^{2k} \cdot 3^2 - 1
$$

\n
$$
= 9(3^{2k}) - 1
$$

\n
$$
\therefore f(k+1) - f(k) = [9(3^{2k}) - 1] - [3^{2k} - 1]
$$

\n
$$
= 9(3^{2k}) - 1 - 3^{2k} + 1
$$

\n
$$
= 8(3^{2k})
$$

: $f(k+1) = f(k) + 8(3^{2k})$

As both $f(k)$ and $8(3^{2k})$ are divisible by 8 then the sum of these two terms must also be divisible by 8. Therefore $f(n)$ is divisible by 8 when $n = k + 1$.

If $f(n)$ is divisible by 8 when $n = k$, then it has been shown that $f(n)$ is also divisible by 8 when $n = k + 1$. As f(*n*) is divisible by 8 when $n = 1$, f(*n*) is also divisible by 8 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

1 c Let $f(n) = 5^n + 9^n + 2$, where $n \in \mathbb{Z}^+$. \therefore f(1) = 5¹ + 9¹ + 2 = 5 + 9 + 2 = 16, which is divisible by 4. \therefore f(*n*) is divisible by 4 when *n* = 1. Assume that for $n = k$, $f(k) = 5^k + 9^k + 2$ is divisible by 4 for $k \in \mathbb{Z}^+$. \therefore $f(k+1) = 5^{k+1} + 9^{k+1} + 2$ $= 5^k.5^1 + 9^k.9^1 + 2$ $= 5(5^k) + 9(9^k) + 2$ \therefore f(k + 1) - f(k) = [5(5^k) + 9(9^k) + 2] - [5^k + 9^k + 2] $=5(5^{k})+9(9^{k})+2-5^{k}-9^{k}-2$ $=4(5^{k})+8(9^{k})$ $=4[5^k+2(9)^k]$ $f(k+1) = f(k) + 4[5^{k} + 2(9)^{k}]$

As both $f(k)$ and $4[5^k + 2(9)^k]$ are divisible by 4 then the sum of these two terms must also be divisible by 4. Therefore $f(n)$ is divisible by 4 when $n = k + 1$.

If f(*n*) is indivisible by 4 when $n = k$, then it has been shown that f(*n*) is also divisible by 4 when $n = k + 1$. As f(*n*) is divisible by 4 when $n = 1$, f(*n*) is also divisible by 4 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

d Let $f(n) = 2^{4n} - 1$, where $n \in \mathbb{Z}^+$. \therefore f(1) = 2⁴⁽¹⁾ -1 = 16 -1 = 15, which is divisible by 15. \therefore f(*n*) = is divisible by 15 when *n* = 1. Assume that for $n = k$, $f(k) = 2^{4k} - 1$ is divisible by 15 for $k \in \mathbb{Z}^+$. \therefore $f(k+1) = 2^{4(k+1)} - 1$ $= 2^{4k+4} - 1$ $= 2^{4k} \cdot 2^4 - 1$ $= 16(2^{4k}) - 1$ \therefore f(k+1) - f(k) = [16(2^{4k}) - 1] - [2^{4k} - 1] $= 16(2^{4k}) - 1 - 2^{4k} + 1$ $=15(8^k)$

 $f(k+1) = f(k) + 15(8^k)$

As both $f(k)$ and $15(8^k)$ are divisible by 15 then the sum of these two terms must also be divisible by 15. Therefore $f(n)$ is divisible by 15 when $n = k + 1$.

If $f(n)$ is divisible by 15 when $n = k$, then it has been shown that $f(n)$ is also divisible by 15 when $n = k + 1$. As f(*n*) is divisible by 15 when $n = 1$, f(*n*) is also divisible by 15 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

1 e Let $f(n) = 3^{2n-1} + 1$, where $n \in \mathbb{Z}^+$. \therefore f(1) = 3²⁽¹⁾⁻¹ + 1 = 3 + 1 = 4, which is divisible by 4. \therefore f(*n*) is divisible by 4 when $n = 1$. Assume that for $n = k$, $f(k) = 3^{2k-1} + 1$ is divisible by 4 for $k \in \mathbb{Z}^+$. \therefore $f(k+1) = 3^{2(k+1)-1} + 1$ $= 3^{2k+2-1}+1$ $= 3^{2k-1} \cdot 3^2 + 1$ $= 9(3^{2k-1}) + 1$ $f(k+1)-f(k) = [9(3^{2k-1})+1] - [3^{2k-1}+1]$ $= 9(3^{2k-1}) + 1 - 3^{2k-1} + 1$ $= 8(3^{2k-1})$

$$
\therefore f(k+1) = f(k) + 8(3^{2k-1})
$$

As both $f(k)$ and $8(3^{2k-1})$ are divisible by 4 then the sum of these two terms must also by divisible by 4. Therefore $f(n)$ is divisible by 4 when $n = k + 1$.

If $f(n)$ is divisible by 4 when $n = k$, then it has been shown that $f(n)$ is also divisible by 4 when $n = k + 1$. As f(*n*) is divisible by 4 when $n = 1$, f(*n*) is also divisible by 8 for $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

f Let $f(n) = n^3 + 6n^2 + 8n$, where $n \ge 1$ and $n \in \mathbb{Z}^+$. \therefore f(1) = 1 + 6 + 8 = 15, which is divisible by 3. \therefore f(*n*) is divisible by 3 when $n = 1$. Assume that for $n = k$, $f(k) = k^3 + 6k^2 + 8k$ is divisible by 3 for $k \in \mathbb{Z}^+$. $f(k+1) = (k+1)^3 + 6(k+1)^2 + 8(k+1)$ $= k^3 + 3k^2 + 3k + 1 + 6(k^2 + 2k + 1) + 8(k + 1)$ $= k³ + 3k² + 3k + 1 + 6k² + 12k + 6 + 8k + 8$ $= k^3 + 9k^2 + 23k + 15$ \therefore f(k + 1) – f(k) = [k³ + 9k² + 23k + 15] – [k³ + 6k² + 8k] $= 3k^2 + 15k + 15$ $= 3(k^2 + 5k + 5)$ $f(k+1) = f(k) + 3(k^2 + 5k + 5)$

As both $f(k)$ and $3(k^2 + 5k + 5)$ are divisible by 3 then the sum of these two terms must also be divisible by 3.

Therefore $f(n)$ is divisible by 3 when $n = k + 1$.

If $f(n)$ is divisible by 3 when $n = k$, then it has been shown that $f(n)$ is also divisible by 3 when $n = k + 1$. As f(*n*) is divisible by 3 when $n = 1$, f(*n*) is also divisible by 3 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

1 g Let $f(n) = n^3 + 5n$, where $n \ge 1$ and $n \in \mathbb{Z}^+$. \therefore f(1) = 1 + 5 = 6, which is divisible by 6. \therefore f(*n*) is divisible by 6 when *n* = 1. Assume that for $n = k$, $f(k) = k^3 + 5k$ is divisible by 6 for $k \in \mathbb{Z}^+$. $f(k+1) = (k+1)^3 + 5(k+1)$ $=k^3+3k^2+3k+1+5(k+1)$ $= k^3 + 3k^2 + 3k + 1 + 5k + 5$ $= k^3 + 3k^2 + 8k + 6$ \therefore f(k + 1) – f(k) = [k³ + 3k² + 8k + 6] – [k³ + 5k] $= 3k^2 + 3k + 6$ $= 3k(k+1) + 6$ $= 3(2m) + 6$ $= 6m + 6$ $= 6(m+1)$ $f: f(k+1) = f(k) + 6(m+1).$

Let $k(k+1) = 2m, m \in \mathbb{Z}^+$, as the product of two consecutive integers must be even.

As both $f(k)$ and $6(m + 1)$ are divisible by 6 then the sum of these two terms must also be divisible by 6. Therefore $f(n)$ is divisible by 6 when $n = k + 1$ If $f(n)$ is divisible by 6 when $n = k$ then it has been shown that $f(n)$ is also divisible by 6 when $n = k + 1$. As f(*n*) is divisible by 6 when $n = 1$, f(*n*) is also divisible by 6 for all $n \ge 1$ and $n \in \mathbb{Z}^+$

by mathematical induction.

h Let $f(n) = 2^n \cdot 3^{2n} - 1$, where $n \in \mathbb{Z}^+$.

:. $f(1) = 2^1 \cdot 3^{2(1)} - 1 = 2(9) - 1 = 18 - 1 = 17$, which is divisible by 17. \therefore f(*n*) is divisible by 17 when *n* = 1. Assume that for $n = k$ $f(k) = 2^{k} \cdot 3^{2k} - 1$ is divisible by 17 for $k \in \mathbb{Z}^{+}$. \therefore f(k + 1) = 2^{k+1}.3^{2(k+1)} -1 $= 2^{k}(2)^{1}(3)^{2k}(3)^{2} - 1$ $= 2^{k}(2)^{1}(3)^{2k}(9) - 1$ $= 18(2^{k}.3^{2k}) - 1$ $f(k+1)-f(k) = \left[18(2^k \cdot 3^{2k})-1\right]-\left[2^k \cdot 3^{2k}-1\right]$ $= 18(2^k \cdot 3^{2k}) - 1 - 2^k \cdot 3^{2k} + 1$ $= 17(2^k.3^{2k})$ \therefore $f(k+1) = f(k) + 17(2^{k} \cdot 3^{2k})$

As both $f(k)$ and $17(2^k \cdot 3^{2k})$ are divisible by 17 then the sum of these two terms must also be divisible by 17.

Therefore $f(n)$ is divisible by 17 when $n = k + 1$.

If f(*n*) is divisible by 17 when $n = k$, then it has been shown that f(*n*) is also divisible by 17 when $n = k + 1$. As f(*n*) is divisible by 17 when $n = 1$, f(*n*) is also divisible by 17 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

- **2** a $f(k+1) = 13^{k+1} 6^{k+1} = 13 \times 13^k 6 \times 6^k = 6(13^k 6^k) + 7 \times 13^k = 6f(k) + 7(13^k)$
	- **b** Basis: $n = 1$: f(1) = 13 6 = 7 is divisible by 7. Assumption: f(*k*) is divisible by 7. Induction: $f(k + 1) = 6f(k) + 7(13^{k})$ by part **a**. So if the statement holds for $n = k$, it holds for $n = k + 1$. Conclusion: The statement holds for all $n \in \mathbb{Z}^+$.
- **3 a** $g(k+1) = 5^{2(k+1)} 6(k+1) + 8 = 25 \times 52k 6k + 2$ $= 25(5^{2k} - 6k + 8) + 144k - 198$ $= 25g(k) + 9(16k - 22)$
- **b** <u>Basis</u>: $n = 1$: $g(1) = 5^2 6 + 8 = 27$ is divisible by 9. Assumption: $g(k)$ is divisible by 9. Induction: $g(k + 1) = 25 g(k) + 9(16k - 22)$ by part **a**. So if the statement holds for $n = k$, it holds for $n = k + 1$. Conclusion: The statement holds for all $n \in \mathbb{Z}^+$.
- **4** $f(n) = 8^n 3^n$, where $n \in \mathbb{Z}^+$.

 \therefore f(1) = 8^1 - 3^1 = 5, which is divisible by 5. \therefore f(*n*) is divisible by 5 when *n* = 1. Assume that for $n = k$, $f(k) = 8^k - 3^k$ is divisible by 5 for $k \in \mathbb{Z}^+$. \therefore f(k+1) = 8^{k+1} - 3^{k+1} $= 8^k.8^1 - 3^k.3^1$ $= 8(8^k) - 3(3^k)$ $f(k+1) - 3f(k) = [8(8^k) - 3(3^k)] - 3[8^k - 3^k]$ $= 8(8^k) - 3(3^k) - 3(8^k) + 3(3^k)$ $= 5(8^k)$

From (a), $f(k+1) = f(k) + 5(8^k)$

As both $f(k)$ and $5(8^k)$ are divisible by 5 then the sum of these two terms must also be divisible by 5. Therefore $f(n)$ is divisible by 5 when $n = k + 1$.

If $f(n)$ is divisible by 5 when $n = k$, then it has been shown that $f(n)$ is also be divisible by 5 when $n = k + 1$. As $f(n)$ is divisible by 5 when $n = 1$, $f(n)$ is also divisible by 5 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

5 $f(n) = 3^{2n+2} + 8n - 9$, where $n \in \mathbb{Z}^+$. \therefore f(1) = 3²⁽¹⁾⁺² + 8(1) - 9 $= 3^4 + 8 - 9 = 81 - 1 = 80$, which is divisible by 8. \therefore f(*n*) is divisible by 8 when *n* = 1. Assume that for $n = k$, $f(k) = 3^{2k+2} + 8k - 9$ is divisible by 8 for $k \in \mathbb{Z}^+$. $f(k+1) = 3^{2(k+1)+2} + 8(k+1) - 9$ $= 3^{2k+2+2} + 8(k+1) - 9$ $=3^{2k+2} \cdot (3^2) + 8^k + 8 - 9$ $= 9(3^{2k+2}) + 8k - 1$ $f(k+1)-f(k) = \left[9(3^{2k+2})+8k-1\right]-\left[3^{2k+2}+8k-9\right]$ $= 9(3^{2k+2}) + 8k - 1 - 3^{2k+2} - 8k + 9$ $= 8(3^{2k+2}) + 8$ $= 8 \left[3^{2k+2} + 1 \right]$ $f(k+1) = f(k) + 8\left[3^{2k+2} + 1\right]$

As both $f(k)$ and $8\left[3^{2k+2}+1\right]$ are divisible by 8 then the sum of these two terms must also be divisible by 8. Therefore $f(n)$ is divisible by 8 when $n = k + 1$.

If $f(n)$ is divisible by 8 when $n = k$, then it has been shown that $f(n)$ is also divisible by 8 when $n = k + 1$. As f(*n*) is divisible by 8 when $n = 1$, f(*n*) is also divisible by 8 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.

Solution Bank

6
$$
f(n) = 2^{6n} + 3^{2n-2}
$$
, where $n \in \mathbb{Z}^+$.
\n
$$
\therefore f(1) = 2^{6(1)} + 3^{2(1)-2} = 2^6 + 3^0 = 64 + 1 = 65
$$
, which is divisible by 5.
\n
$$
\therefore f(n)
$$
 is divisible by 5 when $n = 1$.
\nAssume that for $n = k$.
\n
$$
f(k) = 2^{6k} + 3^{2k-2}
$$
 is divisible by 5 for $k \in \mathbb{Z}^+$.
\n
$$
\therefore f(k+1) = 2^{6(k+1)} + 3^{2(k+1)-2}
$$

\n
$$
= 2^{6k+6} + 3^{2k+2-2}
$$

\n
$$
= 2^6 (2^{6k}) + 3^2 (3^{2k-2})
$$

\n
$$
= 64(2^{6k}) + 9(3^{2k-2})
$$

$$
\begin{aligned} \therefore f(k+1) - f(k) &= \left[64(2^{6k}) + 9(3^{2k-2}) \right] - \left[2^{6k} + 3^{2k-2} \right] \\ &= 64(2^{6k}) + 9(3^{2k-2}) - 2^{6k} - 3^{2k-2} \\ &= 63(2^{6k}) + 8(3^{2k-2}) \\ &= 63(2^{6k}) + 63(3^{2k-2}) - 55(3^{2k-2}) \\ &= 63\left[2^{6k} + 3^{2k-2} \right] - 55(3^{2k-2}) \end{aligned}
$$

$$
\therefore f(k+1) = f(k) + 63 \left[2^{6k} + 3^{2k-2} \right] - 55(3^{2k-2})
$$

= f(k) + 63f(k) - 55(3^{2k-2})
= 64f(k) - 55(3^{2k-2})

$$
\therefore f(k+1) = 64f(k) - 55(3^{2k-2})
$$

As both 64 f(*k*) and $-55(3^{2k-2})$ are divisible by 5 then the sum of these two terms must also be divisible by 5. Therefore $f(n)$ is divisible by 5 when $n = k + 1$.

If $f(n)$ is divisible by 5 when $n = k$ then it has been shown that $f(n)$ is also divisible by 5 when $n = k + 1$. As f(*n*) is divisible by 5 when $n = 1$, f(*n*) is also divisible by 5 for all $n \ge 1$ and $n \in \mathbb{Z}^+$ by mathematical induction.