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Exercise 8A

1 Basis: When n = 1: LHS = 1; RHS = 1
2

(1)(1 + 1) = 1  

Assumption:  
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So if the statement holds for n = k, it holds for n = k + 1. 

 

 Conclusion: The statement holds for all n ∈ ℤ+. 

 

2 Basis: When n = 1: LHS = 1; RHS = 1
4

(1)2(1 + 1)2 = 1  

Assumption:  
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Induction: 
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So if the statement holds for n = k, it holds for n = k + 1. 

 

 Conclusion: The statement holds for all n ∈ ℤ+. 
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3 a Basis: n = 1: LHS = 0; RHS = 1
3

(1)(1 + 1)(1 − 1) = 0  

 Assumption:  
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Induction: 
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            = 1
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k(k + 1)(k − 1) + k(k + 1)   

            = 1
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k(k + 1)(k – 1 + 3) = 1
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 So if the statement holds for n = k, it holds for n = k + 1. 

 

Conclusion: The statement holds for all n ∈ ℤ+. 

 

 b Hence the required expression is  
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n(2n + 1)(n + 1)  

 

4 a Basis: n = 1: LHS = 2; RHS = (1)2(1 + 1) = 2  

 Assumption:  

   2

1

3 1 1
k

r

r r k k



     

 

Induction: 
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     + (k + 1)(3k + 2) 

  = k2 (k + 1) + (k + 1)(3k + 2)  

  = (k + 1)(k2 + 3k + 2) = (k + 1)2(k + 2) 

  
So if the statement holds for n = k, it holds for n = k + 1. 

 

Conclusion: The statement holds for all n ∈ ℤ+. 

 

 b We need to solve the equation 
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  Rearranging and cancelling the common factor 
2 ( 1)n n  gives  

  ( 1)n  = 16 

       n = 15 
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5 a Basis: n = 1: LHS = 1
2

; RHS = 1 – 1
2

= 1
2

 

 Assumption:  
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Induction: 
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So if the statement holds for n = k, it holds for n = k + 1. 

 

Conclusion: The statement holds for all n ∈ ℤ+. 
 

 b Basis: n = 1: LHS =1 × 1!; RHS = (1 + 1)! – 1 = 1  

 Assumption:  
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Induction: 
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                        = (k + 1)! – 1 + (k + 1)(k + 1)!  

                        = (k + 1)! (k + 2) – 1 = ((k + 1) + 1)! – 1)  

   
So if the statement holds for n = k, it holds for n = k + 1. 
 

Conclusion: The statement holds for all n ∈ ℤ+. 
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5 c Basis: n = 1: LHS =
4 4

1 3 3
;


 RHS = 

1 8 4

2 3 3





  

 Assumption:  
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Induction: 
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So if the statement holds for n = k, it holds for n = k + 1. 
 

Conclusion: The statement holds for all n ∈ ℤ+. 

 

6 a The student has just stated and not shown that the statement is true for n = k + 1. 

  

 b e.g. n = 2: LHS = (1 + 2)2 = 9; RHS = 12 + 22 ≠ 9, so that LHS ≠ RHS. 

 
7 a The student has not completed the basis step. 

  

 b e.g. n = 1: LHS = 1; RHS = 1
2

(12 + 1 + 1) = 3
2

≠ 1 

 

Challenge  

Basis: n = 1: LHS = (−1)1 × 12; RHS = 1
2

(−1)1(1)(1+1)  

Assumption:  
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Induction: 
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      = 1
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(−1)k(k + 1) + (−1)k + 1(k + 1)2  

                   = 1
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(−1)k + 1(k + 1)(−k + 2(k + 1)) 

      = 1
2

(−1)k + 1(k + 1)(k + 2)  

   
So if the statement holds for n = k, it holds for n = k + 1. 

 

Conclusion: The statement holds for all n ∈ ℤ+. 

 


