INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

Exercise 8A

1 <u>Basis:</u> When n = 1: LHS = 1; RHS = $\frac{1}{2}(1)(1+1) = 1$ <u>Assumption:</u> $\sum_{k=1}^{k} r = \frac{1}{2}k(k+1)$

Induction:

$$\sum_{r=1}^{k+1} r = \sum_{r=1}^{k} r + (k+1) = \frac{1}{2}k(k+1) + (k+1)$$
$$= \frac{1}{2}k(k+1) + (k+1) = \frac{1}{2}(k+1)(k+2)$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

2 <u>Basis:</u> When n = 1: LHS = 1; RHS = $\frac{1}{4}(1)^2(1+1)^2 = 1$ <u>Assumption:</u>

$$\sum_{r=1}^{k} r^{3} = \frac{1}{4} k^{2} \left(k+1\right)^{2}$$

Induction:

$$\sum_{r=1}^{k+1} r^3 = \sum_{r=1}^{k} r^3 + (k+1)^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$$
$$= \frac{1}{4}(k+1)^2(k^2 + 4(k+1)) = \frac{1}{4}(k+1)^2(k+2)^2$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

3 a <u>Basis</u>: n = 1: LHS = 0; RHS = $\frac{1}{3}(1)(1+1)(1-1) = 0$ <u>Assumption</u>: $\sum_{r=1}^{k} r(r-1) = \frac{1}{3}k(k+1)(k-1)$

Induction:

$$\sum_{r=1}^{k+1} r(r-1) = \sum_{r=1}^{k} r(r-1) + (k+1)k$$

= $\frac{1}{3}k(k+1)(k-1) + k(k+1)$
= $\frac{1}{3}k(k+1)(k-1+3) = \frac{1}{3}k(k+1)(k+2)$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

b Hence the required expression is

$$\sum_{r=1}^{2n+1} r(r-1) = \frac{1}{3} (2n+1)((2n+1)+1)((2n+1)-1)$$
$$= \frac{4}{3} n(2n+1)(n+1)$$

4 a <u>Basis</u>: n = 1: LHS = 2; RHS = $(1)^{2}(1 + 1) = 2$ <u>Assumption</u>: $\sum_{k=1}^{k} r(2n - 1) = k^{2}(k + 1)$

$$\sum_{r=1} r\left(3r-1\right) = k^2\left(k+1\right)$$

Induction:

$$\sum_{r=1}^{k+1} r (3r-1) = \sum_{r=1}^{k} r (3r-1) + (k+1)(3k+2)$$

= $k^2 (k+1) + (k+1)(3k+2)$
= $(k+1)(k^2 + 3k + 2) = (k+1)^2(k+2)$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

b We need to solve the equation

$$4n^2(n+1) = \frac{n^2(n+1)^2}{4}$$

Rearranging and cancelling the common factor $n^2(n+1)$ gives (n+1) = 16n = 15

Further Pure Maths 1

Solution Bank

5 a <u>Basis:</u> n = 1: LHS $=\frac{1}{2}$; RHS $= 1 - \frac{1}{2} = \frac{1}{2}$ <u>Assumption:</u>

$$\sum_{r=1}^{k} \left(\frac{1}{2}\right)^r = 1 - \frac{1}{2^k}$$

Induction:

$$\sum_{r=1}^{k+1} \left(\frac{1}{2}\right)^r = \sum_{r=1}^k \left(\frac{1}{2}\right)^r + \frac{1}{2^{k+1}} = \frac{1}{2^k} + \frac{1}{2^{k+1}}$$
$$= 1 - \frac{2}{2^{k+1}} + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^{k+1}}$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

b <u>Basis:</u> n = 1: LHS =1 × 1!; RHS = (1 + 1)! - 1 = 1 <u>Assumption:</u> $\sum_{r=1}^{k+1} r(r!) = (n+1) - 1$

Induction:

$$\sum_{r=1}^{k+1} r(r!) = \sum_{r=1}^{k} r(r!) + (k+1)(k+1)!$$

= $(k+1)! - 1 + (k+1)(k+1)!$
= $(k+1)! (k+2) - 1 = ((k+1)+1)! - 1)$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

Further Pure Maths 1

Solution Bank

5 c Basis:
$$n = 1$$
: LHS $= \frac{4}{1 \times 3} = \frac{4}{3}$; RHS $= \frac{1 \times 8}{2 \times 3} = \frac{4}{3}$

Assumption:

$$\sum_{r=1}^{k} \frac{4}{r(r+2)} = \frac{k(3k+5)}{(k+1)(k+2)}$$

Induction:

$$\sum_{r=1}^{k+1} \frac{4}{r(r+2)} = \sum_{r=1}^{k} \frac{4}{r(r+2)} + \frac{4}{(k+1)(k+3)}$$
$$= \frac{k(3k+5)}{(k+1)(k+2)} + \frac{4}{(k+1)(k+3)}$$
$$= \frac{k(3k+5)(k+3)}{(k+1)(k+2)(k+3)} + \frac{4(k+2)}{(k+1)(k+2)(k+3)}$$
$$= \frac{k(3k+5)(k+3) + 4(k+2)}{(k+1)(k+2)(k+3)} + \frac{(k+1)(3k+8)}{(k+2)(k+3)}$$
$$= \frac{(k+1)(3(k+1)+5)}{((k+1+1)((k+1)+2))}$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.

6 a The student has just stated and not shown that the statement is true for n = k + 1.

b e.g. n = 2: LHS = $(1 + 2)^2 = 9$; RHS = $1^2 + 2^2 \neq 9$, so that LHS \neq RHS.

7 a The student has not completed the basis step.

b e.g. n = 1: LHS = 1; RHS = $\frac{1}{2}(1^2 + 1 + 1) = \frac{3}{2} \neq 1$

Challenge

<u>Basis:</u> n = 1: LHS = $(-1)^1 \times 1^2$; RHS = $\frac{1}{2}(-1)^1(1)(1+1)$ <u>Assumption:</u>

$$\sum_{r=1}^{k} (-1)^{r} r^{2} = \frac{1}{2} (-1)^{k} k (k+1)$$

Induction:

$$\sum_{r=1}^{k+1} (-1)^r r^2 = \sum_{r=1}^k (-1)^r r^2 + (-1)^{k+1} (k+1)^2$$
$$= \frac{1}{2} (-1)k(k+1) + (-1)^{k+1} (k+1)^2$$
$$= \frac{1}{2} (-1)^{k+1} (k+1)(-k+2(k+1))$$
$$= \frac{1}{2} (-1)^{k+1} (k+1)(k+2)$$

So if the statement holds for n = k, it holds for n = k + 1.

<u>Conclusion</u>: The statement holds for all $n \in \mathbb{Z}^+$.