Further Pure Maths 1

Solution Bank

3 a

Chapter review 6

$$
1 \mathbf{a} \quad \mathbf{Y} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

$$
b \quad AB = Y \Rightarrow A = YB^{-1}
$$

$$
\mathbf{B} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}
$$

det $\mathbf{B} = 3 - 4$

$$
\mathbf{B}^{-1} = -\begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}
$$

$$
\mathbf{A} = \mathbf{Y} \mathbf{B}^{-1}
$$

$$
= -\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}
$$

$$
= -\begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}
$$

$$
= \begin{pmatrix} -2 & 3 \\ -1 & 2 \end{pmatrix}
$$

c ABABABAB = **YYYY** Since *Y* represents an anticlockwise rotation of 90° about *O* **ABABABAB** represents four successive anticlockwise rotations of 90° about *O*, which will map all points onto themselves.

Therefore, **ABABABAB** = 1 0 $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

2 **a**
$$
\mathbf{R} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$
 and $\mathbf{E} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
\n
$$
\mathbf{C} = \mathbf{E} \mathbf{R}
$$
\n
$$
= \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}
$$

Reflection in *x*-axis together with an enlargement with scale factor 2, centre (0, 0).

Transformation can also be described as a stretch of scale factor 2 parallel to the *x*axis and **–**2 parallel to the *y-*axis.

2 b det $C = (2)(-2) - (0)(0) = -4$ $\begin{pmatrix} 1 & 1 & -2 & 0 \end{pmatrix}$ $\frac{1}{2}$ $1 \begin{pmatrix} -2 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \end{pmatrix}$ $^{-1} = -\frac{1}{4} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$ **C**

> C^{-1} represents a reflection in *x*-axis together with an enlargement with scale factor $\frac{1}{2}$, centre $(0, 0)$.

Transformation can also be described as a stretch of scale factor $\frac{1}{2}$ parallel to the *x*axis and $-\frac{1}{2}$ parallel to the *y*-axis.

$$
\mathbf{a} \quad \mathbf{P} = \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}
$$

\nLet $\mathbf{R} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
\n(reflection in the line $y = x$)
\nhas det $\mathbf{R} = -1$
\n
$$
\mathbf{R}^{-1} = -\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

\n
$$
\mathbf{P} = \mathbf{T} \mathbf{R}
$$

\n
$$
\mathbf{T} = P \mathbf{R}^{-1}
$$

\n
$$
= \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}
$$

\n
$$
\mathbf{b} \quad \mathbf{T} \begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} -3k \\ -2k \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} -3k \\ -2k \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}
$$

\n $k = -3$

Further Pure Maths 1

3 c A general point on the line $y = mx$ is given by (x, mx)

$$
\begin{pmatrix} -3 & 0 \ 0 & -3 \end{pmatrix} \begin{pmatrix} x \ mx \end{pmatrix} = \begin{pmatrix} -3x \ -3mx \end{pmatrix}
$$

If $y = mx$ is invariant under

If $y = mx$ is invariant under **T**, then the point $(-3x, -3mx)$ must lie on $y = mx$. $-3mx = m(-3x)$ for all $m \in \mathbb{R}$.

Therefore, all lines of the form $y = mx$ are invariant under **T.**

$$
4 \quad \mathbf{a} \quad \mathbf{M} \begin{pmatrix} 2\sqrt{3} & -2 \\ 2 & 2\sqrt{3} \end{pmatrix}
$$

det $M = 16$ Therefore, area scale factor $= 16$

Since area is not affected by rotation, scale factor of enlargement = $\sqrt{\det A} = 4$ $(or -4)$

$$
\mathbf{b} \begin{pmatrix} 2\sqrt{3} & -2 \\ 2 & 2\sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}
$$

$$
\begin{pmatrix} 2\sqrt{3} & -2 \\ 2 & 2\sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}
$$

$$
= \begin{pmatrix} 4\cos \theta & -4\sin \theta \\ 4\sin \theta & 4\cos \theta \end{pmatrix}
$$

$$
4\cos \theta = 2\sqrt{3} \text{ and } 4\sin \theta = 2
$$

$$
\cos \theta = \frac{\sqrt{3}}{2} \text{ and } \sin \theta = \frac{1}{2}
$$

$$
\theta = 30^{\circ}
$$

so the rotation is 30° anticlockwise about $(0, 0)$

(or 210° if a value of –4 was used for part **a**.)

Solution Bank

4 c From a, det M = 16
\nSo, M⁻¹ =
$$
\frac{1}{16} \begin{pmatrix} 2\sqrt{3} & 2 \\ -2 & 2\sqrt{3} \end{pmatrix}
$$

\nM $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$
\nM⁻¹M $\begin{pmatrix} x \\ y \end{pmatrix} = M^{-1} \begin{pmatrix} a \\ b \end{pmatrix}$
\n $\begin{pmatrix} x \\ y \end{pmatrix} = M^{-1} \begin{pmatrix} a \\ b \end{pmatrix}$
\n $= \frac{1}{16} \begin{pmatrix} 2\sqrt{3} & 2 \\ -2 & 2\sqrt{3} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$
\n $= \frac{1}{16} \begin{pmatrix} 2\sqrt{3}a + 2b, -2a + 2\sqrt{3}b \end{pmatrix}$
\nSo *P* has coordinates $\begin{pmatrix} \sqrt{3}a + b, \sqrt{3}b - a \\ 8, \sqrt{3}b - a \end{pmatrix}$

5 a 0 1 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $A = \begin{vmatrix} 1 & 0 \end{vmatrix}$ and 0 1 $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

A represents reflection in the line $y = x$ **B** represents a rotation through 270° anticlockwise (or 90° clockwise) about (0, 0)

b $0 \t1$ | $0 \t1$ $AB = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ 1 0 0 1 *p* $(-p)$ *q q* $\begin{pmatrix} -1 & 0 \\ 0 & \end{pmatrix}$ $\begin{pmatrix} p \\ -p \\ 0 & \end{pmatrix}$ $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} P \\ g \end{vmatrix} = \begin{vmatrix} P \\ g \end{vmatrix}$ $(0 1)(q) (q)$

Therefore the image is (−*p*, *q*)

6 a

Further Pure Maths 1

4 3 $\mathbf{M} = \begin{pmatrix} -4 & 3 \\ 1 & -2 \end{pmatrix}$ det $M = 5$ Therefore area scale factor is 5 and the area of the original triangle is $\frac{110}{5} = 22$ The triangle has original coordinates (*k*, 2), (6, 2) and (6, 7) $22 = \frac{1}{2}(b)(5)$ Area $=\frac{1}{2}$ 2 2 $=\frac{1}{2}bh$ $=\frac{1}{2}(b$ 44 5 $b =$ So $k = 6 \pm \frac{44}{5}$ 5 $k = 6 \pm$ $k = -2.8$ or $k = 14.8$

b A general point on the line $x + 3y = 0$ is $\left(x, -\frac{1}{3}x\right)$

$$
\begin{pmatrix} -4 & 3 \ 1 & -2 \end{pmatrix} \begin{pmatrix} x \ -\frac{1}{3}x \end{pmatrix} = \begin{pmatrix} -5x \ 5 \ \frac{5}{3}x \end{pmatrix}
$$

\n
$$
\begin{pmatrix} -5x, \frac{5}{3}x \end{pmatrix}
$$
 lies on the line $x + 3y = 0$
\ntherefore it is invariant under **M**

$$
7 \text{ a } \mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}
$$

$$
\mathbf{P} = \mathbf{AB}
$$

$$
\mathbf{P} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}
$$

$$
= \begin{pmatrix} -4 & 0 \\ 0 & 3 \end{pmatrix}
$$

b det $P = -12$ Therefore area scale factor is 12 and the area of the original triangle is $\frac{60}{12} = 5$

a
$$
\mathbf{P} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}
$$

\ndet $\mathbf{P} = a^2$
\n $\mathbf{P}^{-1} = \frac{1}{a^2} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$
\n $= \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{a} \end{pmatrix}$
\n**b** $\mathbf{P} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$
\n $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} 4 \\ 7 \end{pmatrix}$
\n $= \begin{pmatrix} \frac{4}{a} \\ \frac{7}{a} \end{pmatrix}$
\nSo *A* has coordinates $\begin{pmatrix} \frac{4}{a}, \frac{7}{a} \\ \frac{-5}{a} \end{pmatrix}$
\n**P** = $\begin{pmatrix} -1 & 2 \\ -5 & 8 \end{pmatrix}$ represents U

9 $0 -1$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ represents an anticlockwise rotation through 90° about the origin $0 \t -1)(-1 \t 2)$ (5 -8) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ -5 & 8 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ -1 & 2 \end{pmatrix}$ Let 5 -8 $\begin{pmatrix} 5 & -8 \\ -1 & 2 \end{pmatrix}$ be the matrix **T** det $T = 2$ $1 - 1/2$ 8 $^{-1} = \frac{1}{2} \begin{pmatrix} 2 & 8 \\ 1 & 5 \end{pmatrix}$ 1 4 1 5 2 2 $=\begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix}$ $(2 2)$ **T**

8 a

Solution Bank

Further Pure Maths 1

10 a
$$
\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}
$$
 and $\mathbf{B} = \begin{pmatrix} 4 & -1 \\ 3 & -2 \end{pmatrix}$
\n $\mathbf{P} = \mathbf{B} \mathbf{A}$
\n $\mathbf{P} = \begin{pmatrix} 4 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
\n $= \begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}$

b det $P = -5$

Therefore the area scale factor is 5 and the area of the original triangle is $\frac{35}{5} = 7$

c Q is the inverse of
$$
P\begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}
$$

\ndet $P = -5$
\n
$$
P^{-1} = -\frac{1}{5} \begin{pmatrix} 2 & -1 \\ 3 & -4 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} -\frac{2}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{4}{5} \end{pmatrix}
$$

Challenge

a Let the point *P* have coordinates (*a*, *b*) $(0\ 1)(a)$ $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ b \end{pmatrix}$ *a b*

Since the *x*-coordinate is the same as the *y*coordinate, it must lie on the line $y = x$.

b Since
$$
\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
$$
 maps any point onto $y = x$
 $\begin{pmatrix} 0 & 1 \\ 0 & m \end{pmatrix}$ will map any point onto $y = mx$

c For $c \neq 0$, then the line $ax + by = c$ does not go through the origin. Hence the origin cannot be mapped to itself, and the transformation is not linear.

Solution Bank

