Solution Bank

Chapter review 6

$$\mathbf{1} \quad \mathbf{a} \quad \mathbf{Y} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

b
$$AB = Y \Rightarrow A = YB^{-1}$$

$$\mathbf{B} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$

det $\mathbf{B} = 3 - 4$
$$\mathbf{B}^{-1} = -\begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$

$$\mathbf{A} = \mathbf{Y}\mathbf{B}^{-1}$$

$$= -\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$

$$= -\begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 3 \\ -1 & 2 \end{pmatrix}$$

c ABABABAB = YYYY
 Since Y represents an anticlockwise rotation of 90° about O
 ABABABAB represents four successive anticlockwise rotations of 90° about O, which will map all points onto themselves.

Therefore, **ABABABAB** = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

2 a
$$\mathbf{R} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{E} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
C = ER

$$= \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Reflection in *x*-axis together with an enlargement with scale factor 2, centre (0, 0).

Transformation can also be described as a stretch of scale factor 2 parallel to the *x*-axis and -2 parallel to the *y*-axis.

2 b det **C** = (2)(-2) - (0)(0) = -4 $\mathbf{C}^{-1} = -\frac{1}{4} \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$

 C^{-1} represents a reflection in *x*-axis together with an enlargement with scale factor $\frac{1}{2}$, centre (0, 0).

Transformation can also be described as a stretch of scale factor $\frac{1}{2}$ parallel to the *x*-axis and $-\frac{1}{2}$ parallel to the *y*-axis.

3 a
$$\mathbf{P} = \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}$$

Let $\mathbf{R} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
(reflection in the line $y = x$)
has det $\mathbf{R} = -1$
 $\mathbf{R}^{-1} = -\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
 $= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 $\mathbf{P} = \mathbf{TR}$
 $\mathbf{T} = \mathbf{PR}^{-1}$
 $= \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 $= \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$
 $\mathbf{b} \quad \mathbf{T} \begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}$
 $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}$
 $\begin{pmatrix} -3k \\ -2k \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \end{pmatrix}$
 $k = -3$

3 c A general point on the line y = mx is given by (x, mx)

$$\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} -3x \\ -3mx \end{pmatrix}$$

If $y = mx$ is invariant under

If y = mx is invariant under **T**, then the point (-3x, -3mx) must lie on y = mx. -3mx = m(-3x) for all $m \in \mathbb{R}$.

Therefore, all lines of the form y = mx are invariant under **T**.

4 a M
$$\begin{pmatrix} 2\sqrt{3} & -2 \\ 2 & 2\sqrt{3} \end{pmatrix}$$

det $\mathbf{M} = 16$ Therefore, area scale factor = 16 Since area is not affected by rotation, scale factor of enlargement = $\sqrt{\det \mathbf{A}} = 4$ (or -4)

$$\mathbf{b} \begin{pmatrix} 2\sqrt{3} & -2\\ 2 & 2\sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 4 & 0\\ 0 & 4 \end{pmatrix}$$
$$\begin{pmatrix} 2\sqrt{3} & -2\\ 2 & 2\sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 4 & 0\\ 0 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 4\cos\theta & -4\sin\theta\\ 4\sin\theta & 4\cos\theta \end{pmatrix}$$
$$4\cos\theta = 2\sqrt{3} \text{ and } 4\sin\theta = 2$$

$$\cos\theta = \frac{\sqrt{3}}{2}$$
 and $\sin\theta = \frac{1}{2}$
 $\theta = 30^{\circ}$

so the rotation is 30° anticlockwise about (0, 0)

(or 210° if a value of –4 was used for part **a**.)

Solution Bank

4

c From a, det
$$\mathbf{M} = 16$$

So, $\mathbf{M}^{-1} = \frac{1}{16} \begin{pmatrix} 2\sqrt{3} & 2 \\ -2 & 2\sqrt{3} \end{pmatrix}$
 $\mathbf{M} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$
 $\mathbf{M}^{-1}\mathbf{M} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} a \\ b \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} a \\ b \end{pmatrix}$
 $= \frac{1}{16} \begin{pmatrix} 2\sqrt{3} & 2 \\ -2 & 2\sqrt{3} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$
 $= \frac{1}{16} (2\sqrt{3}a + 2b, -2a + 2\sqrt{3}b)$
So *P* has coordinates $\left(\frac{\sqrt{3}a + b}{8}, \frac{\sqrt{3}b - a}{8} \right)$

5 a $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

A represents reflection in the line y = xB represents a rotation through 270° anticlockwise (or 90° clockwise) about (0, 0)

 $\mathbf{b} \quad \mathbf{AB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} -p \\ q \end{pmatrix}$

Therefore the image is (-p, q)

6 a $\mathbf{M} = \begin{pmatrix} -4 & 3 \\ 1 & -2 \end{pmatrix}$ det $\mathbf{M} = 5$ Therefore area scale factor is 5 and the area of the original triangle is $\frac{110}{5} = 22$ The triangle has original coordinates (k, 2), (6, 2) and (6, 7)Area $= \frac{1}{2}bh$ $22 = \frac{1}{2}(b)(5)$ $b = \frac{44}{5}$ So $k = 6 \pm \frac{44}{5}$

Solution Bank

8

9

b A general point on the line x + 3y = 0 is $\begin{pmatrix} x, -\frac{1}{3}x \end{pmatrix}$ $\begin{pmatrix} -4 & 3\\ 1 & -2 \end{pmatrix} \begin{pmatrix} x\\ -\frac{1}{3}x \end{pmatrix} = \begin{pmatrix} -5x\\ \frac{5}{3}x \end{pmatrix}$ $\begin{pmatrix} -5x, \frac{5}{3}x \end{pmatrix}$ lies on the line x + 3y = 0therefore it is invariant under **M**

k = -2.8 or k = 14.8

7 **a**
$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$
 $\mathbf{P} = \mathbf{AB}$
 $\mathbf{P} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$
 $= \begin{pmatrix} -4 & 0 \\ 0 & 3 \end{pmatrix}$

b det $\mathbf{P} = -12$ Therefore area scale factor is 12 and the area of the original triangle is $\frac{60}{12} = 5$

a
$$\mathbf{P} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

det $\mathbf{P} = a^2$
 $\mathbf{P}^{-1} = \frac{1}{a^2} \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$
 $= \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{a} \end{pmatrix}$
b $\mathbf{P}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} 4 \\ 7 \end{pmatrix}$
 $= \begin{pmatrix} \frac{4}{a} \\ \frac{7}{a} \end{pmatrix}$
So *A* has coordinates $\begin{pmatrix} \frac{4}{a}, \frac{7}{a} \end{pmatrix}$
 $\mathbf{P} = \begin{pmatrix} -1 & 2 \\ -5 & 8 \end{pmatrix}$ represents U
 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ represents an anticlockwise

P Pearson

rotation through 90° about the origin

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ -5 & 8 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ -1 & 2 \end{pmatrix}$$
Let $\begin{pmatrix} 5 & -8 \\ -1 & 2 \end{pmatrix}$ be the matrix **T**
det **T** = 2

$$\mathbf{T}^{-1} = \frac{1}{2} \begin{pmatrix} 2 & 8 \\ 1 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 4 \\ \frac{1}{2} & \frac{5}{2} \end{pmatrix}$$

10 a
$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 4 & -1 \\ 3 & -2 \end{pmatrix}$
 $\mathbf{P} = \mathbf{B}\mathbf{A}$
 $\mathbf{P} = \begin{pmatrix} 4 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
 $= \begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}$

b det $\mathbf{P} = -5$

Therefore the area scale factor is 5 and the area of the original triangle is $\frac{35}{5} = 7$

c Q is the inverse of
$$\mathbf{P} \begin{pmatrix} -4 & 1 \\ -3 & 2 \end{pmatrix}$$

det $\mathbf{P} = -5$
 $\mathbf{P}^{-1} = -\frac{1}{5} \begin{pmatrix} 2 & -1 \\ 3 & -4 \end{pmatrix}$
 $= \begin{pmatrix} -\frac{2}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{4}{5} \end{pmatrix}$

Challenge

a Let the point *P* have coordinates (a, b) $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ b \end{pmatrix}$

Since the *x*-coordinate is the same as the *y*-coordinate, it must lie on the line y = x.

b Since
$$\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 maps any point onto $y = x$
 $\begin{pmatrix} 0 & 1 \\ 0 & m \end{pmatrix}$ will map any point onto $y = mx$

c For $c \neq 0$, then the line ax + by = c does not go through the origin. Hence the origin cannot be mapped to itself, and the transformation is not linear.

Solution Bank

