Solution Bank

Chapter review 4

- 1 a A parabola of the form $y^2 = 4ax$ has the focus at (a, 0)so $y^2 = 12x$ has the focus at (3, 0)
 - **b** y = 3x intersects $y^2 = 12x$ at *P* where y > 0Substituting y = 3x into $y^2 = 12x$ gives: $9x^2 = 12x$ 3x(3x - 4) = 0x = 0 or $x = \frac{4}{3}$ When x = 0, y = 0 and when $x = \frac{4}{3}$, y = 4Since y > 0, *P* has coordinates $\left(\frac{4}{3}, 4\right)$

c Area_{*OPS*} =
$$\frac{1}{2}(3)(4)$$

= 6

- **2** a P(k,6) lies on $y^2 = 24x$ Substituting (k, 6) into $y^2 = 24x$ gives: $(6)^2 = 24(k)$ $k = \frac{3}{2}$
 - **b** A parabola of the form $y^2 = 4ax$ has the focus at (a, 0) so $y^2 = 24x$ has the focus at (6, 0)
 - **c** *P* has coordinates $\left(\frac{3}{2}, 6\right)$ and *S* has coordinates (6, 0)

PS has gradient:

$$m_{PS} = \frac{y_P - y_S}{x_P - x_S} = \frac{6 - 0}{\frac{3}{2} - 6} = -\frac{4}{3}$$

Finding the equation of the tangent using

$$y - y_1 = m(x - x_1)$$
 with $m = -\frac{4}{3}$ at (6, 0) gives:
 $y - 0 = -\frac{4}{3}(x - 6)$
 $3y = -4x + 24$
 $4x + 3y - 24 = 0$ as required

Solution Bank

2 d A parabola of the form $y^2 = 4ax$ has the directrix at x + a = 0so $y^2 = 24x$ has the directrix at x + 6 = 0At the point *D* where the line *l* crosses the directrix x = -6Substituting x = -6 into 4x + 3y - 24 = 0 gives: 4(-6) + 3y - 24 = 0y = 16So *D* has coordinates (-6, 16) $P(\frac{3}{2}, 6)$

$$P(\frac{3}{2}, 6)$$

 $P(\frac{3}{2}, 6)$
 $S(6, 0)$
 $x = -6$

Let the point (-6, 0) be C
Area_{ODP} = Area_{CDS} - Area_{CDO} - Area_{OPS}

$$= \frac{1}{2}(12)(16) - \frac{1}{2}(6)(16) - \frac{1}{2}(6)(6)$$

$$= 96 - 48 - 18$$

$$= 30$$

3 a $x = 12t^2$, y = 24t

The general form of a parabola is $y^2 = 4ax$ Substituting $x = 12t^2$ and y = 24t into $y^2 = 4ax$ gives: $(24t)^2 = 4a(12t^2)$ 576 = 48a a = 12So the parabola is $y^2 = 48x$

b A parabola of the form $y^2 = 4ax$ has the directrix at x + a = 0so $y^2 = 48x$ has the directrix at x + 12 = 0

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

3 c The general form of a point on the parabola is $(x, \pm 4\sqrt{3x})$

The distance from any point on a parabola to the focus is the same as the distance from the point to the directrix. *PS* has length 28 so the distance from *P* to the directrix is also 28. x+12=28

x = 16

We are told that y > 0, so P is the point $(16, 4\sqrt{3(16)}) = (16, 16\sqrt{3})$

d Area_{OSP} =
$$\frac{1}{2}(12)(16\sqrt{3})$$

= $96\sqrt{3}$

4 a The line *l* with equation 4x - 9y + 32 = 0 meets $y^2 = 16x$ at *P* and *Q*

$$y^{2} = 16x \Rightarrow x = \frac{y^{2}}{16}$$

Substituting $x = \frac{y^{2}}{16}$ into $4x - 9y + 32 = 0$ gives:
 $4\left(\frac{y^{2}}{16}\right) - 9y + 32 = 0$
 $y^{2} - 36y + 128 = 0$
 $(y - 4)(y - 32) = 0$
 $y = 4$ or $y = 32$
When $y = 4$, $x = 1$ and when $y = 32$, $x = 64$
So P and Q have coordinates (1, 4) and (64, 32)

b
$$y^2 = 16x \Rightarrow y = 4x^{\frac{1}{2}}$$

The gradient of the ta

The gradient of the tangent is

$$\frac{dy}{dx} = 2x^{-\frac{1}{2}}$$
$$= \frac{2}{x^{\frac{1}{2}}}$$
At $x = 4t^2$
$$\frac{dy}{dx} = \frac{2}{(4t^2)^{\frac{1}{2}}}$$
$$= \frac{1}{t}$$

At $x = 4t^2$ the tangent has gradient $\frac{1}{t}$ so the normal has gradient -t

Finding the equation of the normal using

$$y - y_1 = m(x - x_1)$$
 with $m = -t$ at $(4t^2, 8t)$ gives:
 $y - 8t = -t(x - 4t^2)$
 $y - 8t = -xt + 4t^3$
 $xt + y = 4t^3 + 8t$ as required

Solution Bank

4 c *P* and *Q* have coordinates (1, 4) and (64, 32)Comparing the *y*-coordinates of (1, 4) with $(4t^2, 8t)$ gives:

$$8t = 4 \Rightarrow t = \frac{1}{2}$$

Substituting $t = \frac{1}{2}$ into $xt + y = 4t^3 + 8t$ gives:
 $\left(\frac{1}{2}\right)x + y = 4\left(\frac{1}{2}\right)^3 + 8\left(\frac{1}{2}\right)$
 $\frac{1}{2}x + y = \frac{1}{2} + 4$
 $x + 2y - 9 = 0$
Comparing the y-coordinates of (64, 32) with $\left(4t^2, 8t\right)$ gives:

 $8t = 32 \implies t = 4$ Substituting t = 4 into $xt + y = 4t^3 + 8t$ gives: $(4)x + y = 4(4)^3 + 8(4)$ 4x + y - 288 = 0So the equations of the normals at *P* and *Q* are

- x + 2y 9 = 0 and 4x + y 288 = 0
- **d** The normals at *P* and *Q* meet at *R* $x+2y-9=0 \Rightarrow x=-2y+9$ $4x+y-288=0 \Rightarrow x=-\frac{1}{4}y+72$

Equating these equations gives:

$$-2y+9 = -\frac{1}{4}y+72$$
$$8y-36 = y-288$$
$$7y = -252$$
$$y = -36$$

When y = -36, x = 81 so *R* has coordinates (81, -36)

e
$$|OR| = \sqrt{(81-0)^2 + (-36-0)^2}$$

= $9\sqrt{97}$

5 a $P(at^2, 2at)$ lies on $y^2 = 4ax$

A parabola of the form $y^2 = 4ax$ has the focus at (a, 0)A parabola of the form $y^2 = 4ax$ has the directrix at x + a = 0So Q has coordinates (-a, 0)

Solution Bank

5 **b**
$$y^2 = 4ax \Rightarrow y = 2\sqrt{ax^{\frac{1}{2}}}$$

The gradient of the tangent is
 $\frac{dy}{dx} = \sqrt{ax^{-\frac{1}{2}}}$
 $= \frac{\sqrt{a}}{\frac{1}{x^2}}$
At $x = at^2$
 $\frac{dy}{dx} = \frac{\sqrt{a}}{(at^2)^{\frac{1}{2}}}$
 $= \frac{1}{t}$
Finding the equation of the tar

Finding the equation of the tangent using $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at $(at^2, 2at)$ gives: $y - 2at = \frac{1}{t}(x - at^2)$ $ty - 2at^2 = x - at^2$ $x - ty + at^2 = 0$ Substituting (-a, 0) into $x - ty + at^2 = 0$ gives: $-a - t(0) + at^2 = 0$ $at^2 = a$ $t = \pm 1$ Substituting t = 1 into $(at^2, 2at)$ gives (a, 2a)Substituting t = -1 into $(at^2, 2at)$ gives (a, -2a)So *P* has coordinates (a, 2a) or (a, -2a)

Solution Bank

6 a
$$P\left(ct, \frac{c}{t}\right), c > 0, t \neq 0$$
 lies on $xy = c^2$
 $xy = c^2 \Rightarrow y = c^2 x^{-1}$
The gradient of a tangent to a point on the hyperbola is:

 $\frac{dy}{dx} = -c^2 x^{-2}$ $= -\frac{c^2}{x^2}$ At x = ct $\frac{dy}{dx} = -\frac{c^2}{(ct)^2}$ $= -\frac{1}{t^2}$

At x = ct the gradient of the tangent is $-\frac{1}{t^2}$ so the gradient of the normal is t^2 Finding the equation of the normal using

$$y - y_{1} = m(x - x_{1}) \text{ with } m = t^{2} \text{ at } \left(ct, \frac{c}{t}\right) \text{ gives:}$$

$$y - \frac{c}{t} = t^{2} \left(x - ct\right)$$

$$ty - c = t^{3}x - ct^{4}$$

$$t^{3}x - ty = c\left(t^{4} - 1\right) \text{ as required}$$

b (12, 3) lies on xy = 36 $P\left(ct, \frac{c}{t}\right)$ lies on $xy = c^2$ Comparing $\left(ct, \frac{c}{t}\right)$ to (12, 3) gives: ct = 12 and $\frac{c}{t} = 3$ Solving gives a = 6 and t = 2

Solving gives c = 6 and t = 2Substituting these values into the equation of the normal found in part **a** gives: $t^{3}x - ty = c(t^{4} - 1)$ $(2)^{3}x - (2)y = (6)((2)^{4} - 1)$

$$4x - y - 45 = 0$$

Solution Bank

6 c 4x - y - 45 = 0 meets the curve xy = 36 again at QSubstituting $y = \frac{36}{x}$ into 4x - y - 45 = 0 gives: $4x - \left(\frac{36}{x}\right) - 45 = 0$ $4x^2 - 45x - 36 = 0$ (4x + 3)(x - 12) = 0 $x = -\frac{3}{4}$ or x = 12When $x = -\frac{3}{4}$, y = -48 so Q has coordinates $\left(-\frac{3}{4}, -48\right)$

7 The hyperbola xy = 9 has tangents l_1 and l_2 both with gradient $-\frac{1}{4}$

$$xy = 9 \Longrightarrow y = 9x^{-1}$$

The gradient of a tangent to a point on the hyperbola is:

$$\frac{dy}{dx} = -9x^{-2}$$

$$= -\frac{9}{x^{2}}$$

 l_{1} and l_{2} have gradient $-\frac{1}{4}$ so
$$-\frac{9}{x^{2}} = -\frac{1}{4}$$

 $x = \pm 6$

When $x = 6$, $y = \frac{3}{2}$ and when $x = -6$, $y = -\frac{3}{2}$

So the points where l_{1} and l_{2} touch the hyperbola are $\left(6, \frac{3}{2}\right)$ and $\left(-6, -\frac{3}{2}\right)$

Finding the equations of l_{1} and l_{2} using
$$y - y_{1} = m(x - x_{1}) \text{ with } m = -\frac{1}{4} \text{ at } \left(6, \frac{3}{2}\right) \text{ gives:}$$

$$y - \frac{3}{2} = -\frac{1}{4}(x - 6)$$

$$4y - 6 = -x + 6$$

$$x + 4y - 12 = 0$$
Using $y - y_{1} = m(x - x_{1}) \text{ with } m = -\frac{1}{4} \text{ at } \left(-6, -\frac{3}{2}\right) \text{ gives:}$

$$y + \frac{3}{2} = -\frac{1}{4}(x + 6)$$

$$4y + 6 = -x - 6$$

$$x + 4y + 12 = 0$$
So l_{1} and l_{2} have the equations $x + 4y - 12 = 0$ and $x + 4y + 12 = 0$

Solution Bank

8 a
$$P\left(ct, \frac{c}{t}\right), c > 0, t \neq 0$$
 lies on $xy = c^2$
 $xy = c^2 \Rightarrow y = c^2 x^{-1}$
The gradient of a tangent to a point on the hyperbola is:
 $\frac{dy}{dx} = -c^2 x^{-2}$
 $= -\frac{c^2}{x^2}$
At $x = ct$
 $\frac{dy}{dx} = -\frac{c^2}{(ct)^2}$
 $= -\frac{1}{t^2}$
Finding the equation of the tangent using
 $y - y_1 = m(x - x_1)$ with $m = -\frac{1}{t^2}$ at $\left(ct, \frac{c}{t}\right)$ gives:
 $y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$
 $t^2y - ct = -x + ct$
 $x + t^2y - 2ct = 0$
At $X, y = 0$
Substituting $y = 0$ into $x + t^2y - 2ct = 0$ gives:
 $x + t^2(0) - 2ct = 0$
 $x = 2ct$ so X has coordinates $(2ct, 0)$
At $Y, x = 0$
Substituting $x = 0$ into $x + t^2y - 2ct = 0$ gives:
 $(0) + t^2y - 2ct = 0$
 $y = \frac{2c}{t}$ so Y has coordinates $\left(0, \frac{2c}{t}\right)$

b *O* is the point (0, 0) and the triangle *OXY* has an area of 144 Area_{*OXY*} = $\frac{1}{2}(2ct)\left(\frac{2c}{t}\right) = 144$ $2c^2 = 144$ $c = \pm 6\sqrt{2}$

Since
$$c > 0$$

 $c = 6\sqrt{2}$

Solution Bank

9 a
$$P\left(ct, \frac{c}{t}\right), c > 0, t \neq 0$$
 lies on $xy = c^2$
 $xy = c^2 \implies y = c^2 x^{-1}$

The gradient of a tangent to a point on the hyperbola is:

$$\frac{dy}{dx} = -c^2 x^{-2}$$
$$= -\frac{c^2}{x^2}$$
At $x = ct$
$$\frac{dy}{dx} = -\frac{c^2}{(ct)^2}$$
$$= -\frac{1}{t^2}$$

Finding the equation of the tangent using

$$y - y_1 = m(x - x_1) \text{ with } m = -\frac{1}{t^2} \text{ at } \left(ct, \frac{c}{t}\right) \text{ gives:}$$
$$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$$
$$t^2 y - ct = -x + ct$$
$$x + t^2 y = 2ct \text{ as required}$$

- **b** $x + t^2 y = 2ct$ cuts the x-axis at (2a, 0)Substituting (2a, 0) into $x + t^2 y = 2ct$ gives: $(2a) + t^2 (0) = 2ct$ $t = \frac{a}{c}$
 - Substituting $t = \frac{a}{c}$ into $\left(ct, \frac{c}{t}\right)$ gives $\left(a, \frac{c^2}{a}\right)$ as required
- **c** The *x*-coordinate of *Q* is 2aSubstituting x = 2a into $xy = c^2$ gives:

$$y = \frac{c^2}{2a}$$

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

9 d OQ has gradient

$$m_{OQ} = \frac{y_Q - y_O}{x_Q - x_O}$$
$$= \frac{\frac{c^2}{2a} - 0}{2a - 0}$$
$$= \frac{c^2}{4a^2}$$

Finding the equation of the OQ using

$$y - y_1 = m(x - x_1)$$
 with $m = \frac{c^2}{4a^2}$ at (0, 0) gives:
 $y - 0 = \frac{c^2}{4a^2}(x - 0)$
 $y = \frac{c^2 x}{4a^2}$

e From **a**, the equation of the tangent to H at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct \cdot PX$ is the tangent at P.

From **b**, at *P*, $t = \frac{a}{c}$

Therefore, the equation of *PX* is $x + \left(\frac{a}{c}\right)^2 y = 2c\left(\frac{a}{c}\right)$

$$\Rightarrow y = \frac{2ac^2 - c^2x}{a^2} \text{ or } y = -\frac{c^2}{a^2}x + \frac{2c^2}{a}$$

From d. QQ has the equation $y = \frac{c^2x}{a^2}$

From **d**, *OQ* has the equation $y = \frac{e^{-x}}{4a^2}$

Equating gives:

$$\frac{2ac^2 - c^2x}{a^2} = \frac{c^2x}{4a^2}$$

$$4(2ac^2 - c^2x) = c^2x$$

$$8ac^2 - 4c^2x = c^2x$$

$$5c^2x = 8ac^2$$

$$x = \frac{8a}{5}$$
When $x = \frac{8a}{5}$, $y = \frac{2c^2}{5a}$ so *R* has coordinates $\left(\frac{8a}{5}, \frac{2c^2}{5a}\right)$

Solution Bank

9 f *OQ* and *XP* are perpendicular, therefore $m_{OQ} \times m_{XP} = -1$

From part **d** $m_{OQ} = \frac{c^2}{4a^2}$ From part **e** $m_{XP} = -\frac{c^2}{a^2}$ $\frac{c^2}{4a^2} \times -\frac{c^2}{a^2} = -1$ $\frac{c^4}{4a^4} = 1$ $c^4 = 4a^4$ $c^2 = 2a^2$ as required

g From part **e** *R* has *y*-coordinate $\frac{2c^2}{5a}$ Substituting $c^2 = 2a^2$ gives: $\frac{2c^2}{5a} = \frac{2(2a^2)}{5a}$ $= \frac{4a}{5}$

Solution Bank

Challenge

For the parabola with equation $x^2 = 4ay$

$$x^2 = 4ay \Longrightarrow y = \frac{x^2}{4a}$$

The gradient of a tangent to a point on the parabola is: $\frac{dy}{dt} = \frac{x}{2}$

$$dx = 2a$$

Let the point where the tangent meets $x^2 = 4ay$ be (x_1, y_1)

Since (x_1, y_1) lies on $x^2 = 4ay$ it is of the form $\left(x_1, \frac{x_1^2}{4a}\right)$

Therefore the gradient at x_1 is $\frac{x_1}{2a}$

The equation of the tangent to $x^2 = 4ay$ is found using:

$$y - y_{1} = m(x - x_{1}) \text{ with } m = \frac{x_{1}}{2a} \text{ at } \left(x_{1}, \frac{x_{1}^{2}}{4a}\right)$$
$$y - \frac{x_{1}^{2}}{4a} = \frac{x_{1}}{2a}(x - x_{1})$$
$$y = \frac{x_{1}x}{2a} - \frac{x_{1}^{2}}{2a} + \frac{x_{1}^{2}}{4a}$$
$$y = \frac{x_{1}x}{2a} - \frac{x_{1}^{2}}{4a}$$

For the parabola with equation $y^2 = 4ax$

$$y^2 = 4ax \Longrightarrow y = 2\sqrt{ax^{\frac{1}{2}}}$$

The gradient of a tangent to a point on the parabola is:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\sqrt{x}}$$

Let the point where the tangent meets $y^2 = 4ax$ be (x_2, y_2) Since (x_2, y_2) lies on $y^2 = 4ax$ it is of the form $(x_2, 2\sqrt{ax_2})$

Therefore the gradient at x_2 is $\frac{\sqrt{a}}{\sqrt{x_2}}$

The equation of the tangent to $y^2 = 4ax$ is found using:

$$y - y_2 = m(x - x_2) \text{ with } m = \frac{\sqrt{a}}{\sqrt{x_2}} \text{ at } (x_2, 2\sqrt{ax_2})$$
$$y - 2\sqrt{ax_2} = \frac{\sqrt{a}}{\sqrt{x_2}}(x - x_2)$$
$$y = \frac{\sqrt{ax}}{\sqrt{x_2}} - \sqrt{ax_2} + 2\sqrt{ax_2}$$
$$y = \frac{\sqrt{ax}}{\sqrt{x_2}} + \sqrt{ax_2}$$

Solution Bank

So the equations of the tangent are:

$$y = \frac{x_1 x}{2a} - \frac{x_1^2}{4a}$$
 and $y = \frac{\sqrt{ax}}{\sqrt{x_2}} + \sqrt{ax_2}$

Since these represent the same line, comparing coefficients gives:

$$-\frac{x_1}{2a} = \frac{\sqrt{a}}{\sqrt{x_2}} \text{ and } \frac{x_1^2}{4a} = \sqrt{ax_2}$$

$$\frac{x_1^2}{4a} = \sqrt{ax_2} \Rightarrow \sqrt{x_2} = \frac{x_1^2}{4a\sqrt{a}}$$
Substituting $\sqrt{x_2} = \frac{x_1^2}{4a\sqrt{a}} \text{ into } -\frac{x_1}{2a} = \frac{\sqrt{a}}{\sqrt{x_2}} \text{ gives:}$

$$-\frac{x_1}{2a} = \frac{\sqrt{a}}{\left(\frac{x_1^2}{4a\sqrt{a}}\right)}$$

$$-\frac{x_1}{2a} = \frac{4a^2}{x_1^2}$$

$$x_1^3 = -8a^3$$

$$x_1 = -2a$$

Since (x_1, y_1) is of the form $\left(x_1, \frac{x_1^2}{4a}\right)$

Substituting $x_1 = -2a$ into $y = \frac{x_1x}{2a} - \frac{x_1^2}{4a}$ (the equation of the tangent to $x^2 = 4ay$) gives:

$$y = \frac{(-2a)x}{2a} - \frac{(-2a)^2}{4a}$$

So the equation of the line that is tangent to both parabolas is y + x + a = 0