Solution Bank

Chapter review 4

- **1 a** A parabola of the form $y^2 = 4ax$ has the focus at $(a, 0)$ so $y^2 = 12x$ has the focus at (3, 0)
	- **b** $y = 3x$ intersects $y^2 = 12x$ at *P* where $y > 0$ Substituting $y = 3x$ into $y^2 = 12x$ gives: $9x^2 = 12x$ $3x(3x-4)=0$ $x = 0$ or $x = \frac{4}{3}$ 3 $x =$ When $x = 0$, $y = 0$ and when $x = \frac{4}{3}$ 3 $x = \frac{1}{2}, y = 4$ Since $y > 0$, *P* has coordinates $\left(\frac{4}{2}, 4\right)$ $\left(\frac{4}{3},4\right)$

c Area_{OPS} =
$$
\frac{1}{2}(3)(4)
$$

= 6

- **2 a** $P(k,6)$ lies on $y^2 = 24x$ Substituting $(k, 6)$ into $y^2 = 24x$ gives: $(6)^2 = 24(k)$ 3 2 $k =$
	- **b** A parabola of the form $y^2 = 4ax$ has the focus at $(a, 0)$ so $y^2 = 24x$ has the focus at (6, 0)
	- **c** *P* has coordinates $\left(\frac{3}{2}, 6\right)$ $\left(\frac{3}{2}, 6\right)$ and *S* has coordinates (6, 0)

PS has gradient:

$$
m_{PS} = \frac{y_P - y_S}{x_P - x_S}
$$

$$
= \frac{6 - 0}{\frac{3}{2} - 6}
$$

$$
= -\frac{4}{3}
$$

Finding the equation of the tangent using

$$
y - y_1 = m(x - x_1) \text{ with } m = -\frac{4}{3} \text{ at } (6, 0) \text{ gives:}
$$

\n
$$
y - 0 = -\frac{4}{3}(x - 6)
$$

\n
$$
3y = -4x + 24
$$

\n
$$
4x + 3y - 24 = 0 \text{ as required}
$$

Solution Bank

2 d A parabola of the form $y^2 = 4ax$ has the directrix at $x + a = 0$ so $y^2 = 24x$ has the directrix at $x + 6 = 0$ At the point *D* where the line *l* crosses the directrix $x = -6$ Substituting $x = -6$ into $4x + 3y - 24 = 0$ gives: $4(-6) + 3y - 24 = 0$ $y = 16$ So *D* has coordinates (−6, 16) $(\frac{3}{2}, 6)$ *P* 2 \mathcal{V} $D(-6, 16)$ $\stackrel{x}{\rightarrow}$

$$
S(6, 0)
$$

Let the point
$$
(-6, 0)
$$
 be C
\nArea_{ODP} = Area_{CDS} - Area_{CDO} - Area_{OPS}
\n
$$
= \frac{1}{2}(12)(16) - \frac{1}{2}(6)(16) - \frac{1}{2}(6)(6)
$$
\n
$$
= 96 - 48 - 18
$$
\n
$$
= 30
$$

3 a $x = 12t^2$, $y = 24t$

The general form of a parabola is $y^2 = 4ax$ Substituting $x = 12t^2$ and $y = 24t$ into $y^2 = 4ax$ gives: $(24t)^2 = 4a(12t^2)$ $576 = 48a$ $a = 12$ So the parabola is $y^2 = 48x$

b A parabola of the form $y^2 = 4ax$ has the directrix at $x + a = 0$ so $y^2 = 48x$ has the directrix at $x + 12 = 0$

INTERNATIONAL A LEVEL

Further Pure Maths 1

Solution Bank

3 c The general form of a point on the parabola is $(x, \pm 4\sqrt{3x})$

The distance from any point on a parabola to the focus is the same as the distance from the point to the directrix. *PS* has length 28 so the distance from *P* to the directrix is also 28. $x + 12 = 28$

 $x = 16$

We are told that *y* > 0, so *P* is the point $(16, 4\sqrt{3(16)}) = (16, 16\sqrt{3})$

d Area_{OSP} =
$$
\frac{1}{2}
$$
(12)(16 $\sqrt{3}$)
= 96 $\sqrt{3}$

4 a The line *l* with equation $4x - 9y + 32 = 0$ meets $y^2 = 16x$ at *P* and *Q*

$$
y^2 = 16x \Rightarrow x = \frac{y^2}{16}
$$

Substituting $x = \frac{y^2}{16}$ into $4x - 9y + 32 = 0$ gives:

$$
4\left(\frac{y^2}{16}\right) - 9y + 32 = 0
$$

$$
y^2 - 36y + 128 = 0
$$

$$
(y - 4)(y - 32) = 0
$$

$$
y = 4 \text{ or } y = 32
$$
When $y = 4$, $x = 1$ and when $y = 32$, $x = 64$
So *P* and *Q* have coordinates (1, 4) and (64, 32)

b
$$
y^2 = 16x \Rightarrow y = 4x^{\frac{1}{2}}
$$

\nThe gradient of the tangent is
\n
$$
\frac{dy}{dx} = 2x^{-\frac{1}{2}}
$$
\n
$$
= \frac{2}{\frac{1}{x^2}}
$$
\nAt $x = 4t^2$
\n
$$
\frac{dy}{dx} = \frac{2}{(4t^2)^{\frac{1}{2}}}
$$
\n
$$
= \frac{1}{t^2}
$$

t

At $x = 4t^2$ the tangent has gradient $\frac{1}{t}$ *t* so the normal has gradient −*t*

Finding the equation of the normal using
\n
$$
y-y_1 = m(x-x_1)
$$
 with $m = -t$ at $(4t^2, 8t)$ gives:
\n $y-8t = -t(x-4t^2)$
\n $y-8t = -xt + 4t^3$
\n $xt + y = 4t^3 + 8t$ as required

Solution Bank

4 c *P* and *Q* have coordinates (1, 4) and (64, 32) Comparing the *y*-coordinates of $(1, 4)$ with $(4t², 8t)$ gives:

$$
8t = 4 \Rightarrow t = \frac{1}{2}
$$

\nSubstituting $t = \frac{1}{2}$ into $xt + y = 4t^3 + 8t$ gives:
\n
$$
\left(\frac{1}{2}\right)x + y = 4\left(\frac{1}{2}\right)^3 + 8\left(\frac{1}{2}\right)
$$
\n
$$
\frac{1}{2}x + y = \frac{1}{2} + 4
$$
\n
$$
x + 2y - 9 = 0
$$
\nComparing the *y*-coordinates of (64, 32) with (4t², 8t) gives:
\n
$$
8t - 32 \Rightarrow t - 4
$$

 $8t = 32 \implies t = 4$ Substituting $t = 4$ into $xt + y = 4t^3 + 8t$ gives: $(4) x + y = 4(4)^3 + 8(4)$ $4x + y - 288 = 0$ So the equations of the normals at *P* and *Q* are

- $x + 2y 9 = 0$ and $4x + y 288 = 0$
- **d** The normals at *P* and *Q* meet at *R* $x + 2y - 9 = 0 \implies x = -2y + 9$ $4x + y - 288 = 0 \Rightarrow x = -\frac{1}{4}y + 72$ Equating these equations gives:

$$
-2y+9=-\frac{1}{4}y+72
$$

8y-36 = y-288
7y = -252
y = -36

When $y = -36$, $x = 81$ so *R* has coordinates (81, -36)

$$
e \quad |OR| = \sqrt{(81-0)^2 + (-36-0)^2} \\
= 9\sqrt{97}
$$

5 a $P(at^2, 2at)$ lies on $y^2 = 4ax$

A parabola of the form $y^2 = 4ax$ has the focus at $(a, 0)$ A parabola of the form $y^2 = 4ax$ has the directrix at $x + a = 0$ So *Q* has coordinates (−*a*, 0)

Solution Bank

5 **b**
$$
y^2 = 4ax \Rightarrow y = 2\sqrt{ax^{\frac{1}{2}}}
$$

\nThe gradient of the tangent is
\n
$$
\frac{dy}{dx} = \sqrt{ax^{\frac{1}{2}}}
$$
\n
$$
= \frac{\sqrt{a}}{\frac{1}{x^2}}
$$
\nAt $x = at^2$
\n
$$
\frac{dy}{dx} = \frac{\sqrt{a}}{(at^2)^{\frac{1}{2}}}
$$
\n
$$
= \frac{1}{a} = \frac{1}{a}
$$

t Finding the equation of the tangent using $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at $(at^2, 2at)$ gives: $y - 2at = \frac{1}{2}(x - at^2)$ $ty - 2at^2 = x - at^2$ $x - ty + at^2 = 0$ *t* $-2at = -x-$ Substituting($-a$,0) into $x - ty + at^2 = 0$ gives: $-a-t(0)+at^2=0$ $at^2 = a$ $t = \pm 1$ Substituting $t = 1$ into $(at^2, 2at)$ gives $(a, 2a)$ Substituting $t = -1$ into $(at^2, 2at)$ gives $(a, -2a)$ So *P* has coordinates $(a, 2a)$ or $(a, -2a)$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 5

Solution Bank

6 **a**
$$
P\left(ct, \frac{c}{t}\right)
$$
, $c > 0$, $t \neq 0$ lies on $xy = c^2$
\n $xy = c^2 \implies y = c^2 x^{-1}$

The gradient of a tangent to a point on the hyperbola is:

$$
\frac{dy}{dx} = -c^2 x^{-2}
$$

$$
= -\frac{c^2}{x^2}
$$
At $x = ct$
$$
\frac{dy}{dx} = -\frac{c^2}{(ct)^2}
$$

$$
= -\frac{1}{t^2}
$$

At *x* = *ct* the gradient of the tangent is $-\frac{1}{t^2}$ *t* $-\frac{1}{2}$ so the gradient of the normal is t^2 Finding the equation of the normal using

$$
y-y_1 = m(x-x_1) \text{ with } m = t^2 \text{ at } \left(ct, \frac{c}{t}\right) \text{ gives:}
$$

\n
$$
y - \frac{c}{t} = t^2 (x - ct)
$$

\n
$$
ty - c = t^3 x - ct^4
$$

\n
$$
t^3 x - ty = c(t^4 - 1) \text{ as required}
$$

b $(12, 3)$ lies on $xy = 36$ $P\left(ct, \frac{c}{c}\right)$ $(ct, \frac{c}{t})$ lies on $xy = c^2$ Comparing $\int ct$, $\frac{c}{t}$ $\left(ct, \frac{c}{t}\right)$ to (12, 3) gives: *ct* = 12 and $\frac{c}{\cdot}$ = 3 *t* = Solving gives $c = 6$ and $t = 2$ Substituting these values into the equation of the normal found in part **a** gives: $t^3 x - ty = c(t^4 - 1)$

$$
(2)3 x - (2)y = (6)(2)4 - 1)
$$

4x - y - 45 = 0

Solution Bank

- **6 c** $4x y 45 = 0$ meets the curve $xy = 36$ again at *Q* Substituting $y = \frac{36}{x}$ into $4x - y - 45 = 0$ gives: $(4x+3)(x-12) = 0$ $4x^2 - 45x - 36 = 0$ $4x - \left(\frac{36}{2}\right) - 45 = 0$ $\frac{3}{4}$ or $x = 12$ $-\left(\frac{36}{x}\right) - 45 =$ $x = -\frac{3}{4}$ or $x =$
	- 4 When $x = -\frac{3}{4}$ 4 $x = -\frac{3}{4}$, $y = -48$ so *Q* has coordinates $\left(-\frac{3}{4}, -48\right)$ $\left(-\frac{3}{4}, -48 \right)$

7 The hyperbola $xy = 9$ has tangents l_1 and l_2 both with gradient $-\frac{1}{4}$ 4 −

$$
xy = 9 \Longrightarrow y = 9x^{-1}
$$

The gradient of a tangent to a point on the hyperbola is:

$$
\frac{dy}{dx} = -9x^{-2}
$$
\n
$$
= -\frac{9}{x^2}
$$
\n
$$
l_1 \text{ and } l_2 \text{ have gradient } -\frac{1}{4} \text{ so}
$$
\n
$$
-\frac{9}{x^2} = -\frac{1}{4}
$$
\n
$$
x = \pm 6
$$
\nWhen $x = 6$, $y = \frac{3}{2}$ and when $x = -6$, $y = -\frac{3}{2}$
\nSo the points where l_1 and l_2 touch the hyperbola are $\left(6, \frac{3}{2}\right)$ and $\left(-6, -\frac{3}{2}\right)$.
\nFinding the equations of l_1 and l_2 using
\n $y - y_1 = m(x - x_1)$ with $m = -\frac{1}{4}$ at $\left(6, \frac{3}{2}\right)$ gives:
\n
$$
y - \frac{3}{2} = -\frac{1}{4}(x - 6)
$$
\n
$$
4y - 6 = -x + 6
$$
\n
$$
x + 4y - 12 = 0
$$
\nUsing $y - y_1 = m(x - x_1)$ with $m = -\frac{1}{4}$ at $\left(-6, -\frac{3}{2}\right)$ gives:
\n
$$
y + \frac{3}{2} = -\frac{1}{4}(x + 6)
$$
\n
$$
4y + 6 = -x - 6
$$
\n
$$
x + 4y + 12 = 0
$$
\nSo l_1 and l_2 have the equations $x + 4y - 12 = 0$ and $x + 4y + 12 = 0$

Solution Bank

8 a
$$
P(ct, \frac{c}{t}), c > 0, t \neq 0
$$
 lies on $xy = c^2$
\n $xy = c^2 \Rightarrow y = c^2x^{-1}$
\nThe gradient of a tangent to a point on the hyperbola is:
\n $\frac{dy}{dx} = -c^2x^{-2}$
\n $= -\frac{c^2}{x^2}$
\nAt $x = ct$
\n $\frac{dy}{dx} = -\frac{c^2}{(ct)^2}$
\n $= -\frac{1}{t^2}$
\nFinding the equation of the tangent using
\n $y - y_1 = m(x - x_1)$ with $m = -\frac{1}{t^2}$ at $(ct, \frac{c}{t})$ gives:
\n $y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$
\n $t^2y - ct = -x + ct$
\n $x + t^2y - 2ct = 0$
\nAt $X, y = 0$
\nSubstituting $y = 0$ into $x + t^2y - 2ct = 0$ gives:
\n $x + t^2(0) - 2ct = 0$
\n $x = 2ct$ so *X* has coordinates $(2ct, 0)$
\nAt $Y, x = 0$
\nSubstituting $x = 0$ into $x + t^2y - 2ct = 0$ gives:
\n $(0) + t^2y - 2ct = 0$
\n $y = \frac{2c}{t}$ so *Y* has coordinates $\left(0, \frac{2c}{t}\right)$

b *O* is the point (0, 0) and the triangle *OXY* has an area of 144 Area_{oxy} = $\frac{1}{2} (2ct) \left(\frac{2c}{c} \right) = 144$ $\frac{OXY}{2}$ ct) $\left(\frac{2c}{c}\right)$ $=\frac{1}{2}(2ct)\left(\frac{2c}{t}\right)=$ $2c^2 = 144$ $c = \pm 6\sqrt{2}$ Since $c > 0$ $c = 6\sqrt{2}$

Solution Bank

9 a
$$
P\left(ct, \frac{c}{t}\right)
$$
, $c > 0$, $t \neq 0$ lies on $xy = c^2$

 $xy = c^2 \implies y = c^2 x^{-1}$

The gradient of a tangent to a point on the hyperbola is:

$$
\frac{dy}{dx} = -c^2 x^{-2}
$$

$$
= -\frac{c^2}{x^2}
$$
At $x = ct$
$$
\frac{dy}{dx} = -\frac{c^2}{(ct)^2}
$$

$$
= -\frac{1}{t^2}
$$

Finding the equation of the tangent using

$$
y - y_1 = m(x - x_1) \text{ with } m = -\frac{1}{t^2} \text{ at } \left(ct, \frac{c}{t}\right) \text{ gives:}
$$

\n
$$
y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)
$$

\n
$$
t^2 y - ct = -x + ct
$$

\n
$$
x + t^2 y = 2ct \text{ as required}
$$

- **b** $x + t^2 y = 2ct$ cuts the *x*-axis at (2*a*, 0) Substituting (2*a*, 0) into $x + t^2y = 2ct$ gives: $(2a) + t^2(0) = 2ct$ $t = \frac{a}{a}$ *c* = $a, \frac{c}{c}$
	- Substituting $t = \frac{a}{c}$ into $\left(ct, \frac{c}{t}\right)$ $\left(ct, \frac{c}{t}\right)$ gives $\left(a, \frac{c^2}{a}\right)$ $\left(a,\frac{c^2}{a}\right)$ as required
- **c** The *x*-coordinate of *Q* is 2*a* Substituting $x = 2a$ into $xy = c^2$ gives:

$$
y = \frac{c^2}{2a}
$$

Solution Bank

9 d *OQ* has gradient

$$
m_{OQ} = \frac{y_Q - y_O}{x_Q - x_O}
$$

$$
= \frac{c^2}{2a - 0}
$$

$$
= \frac{c^2}{4a^2}
$$

Finding the equation of the *OQ* using

$$
y - y_1 = m(x - x_1) \text{ with } m = \frac{c^2}{4a^2} \text{ at } (0, 0) \text{ gives:}
$$

\n
$$
y - 0 = \frac{c^2}{4a^2} (x - 0)
$$

\n
$$
y = \frac{c^2 x}{4a^2}
$$

e From **a**, the equation of the tangent to *H* at $\left(ct, \frac{c}{c} \right)$ $(ct, \frac{c}{t})$ is $x + t^2 y = 2ct$. *PX* is the tangent at *P*.

From **b**, at *P*, $t = \frac{a}{c}$

Therefore, the equation of *PX* is $x + \left(\frac{a}{x}\right)^2 y = 2c\left(\frac{a}{x}\right)$ $+\left(\frac{a}{c}\right)^2 y = 2c\left(\frac{a}{c}\right)$

$$
\Rightarrow y = \frac{2ac^2 - c^2x}{a^2} \text{ or } y = -\frac{c^2}{a^2}x + \frac{2c^2}{a}
$$

From **d**, *OQ* has the equation $y = \frac{3a}{4a^2}$ $y = \frac{c^2x}{4a^2}$

Equating gives:

$$
\frac{2ac^2 - c^2x}{a^2} = \frac{c^2x}{4a^2}
$$

4(2ac² - c²x) = c²x
8ac² - 4c²x = c²x
5c²x = 8ac²
 $x = \frac{8a}{5}$
When $x = \frac{8a}{5}$, $y = \frac{2c^2}{5a}$ so *R* has coordinates $\left(\frac{8a}{5}, \frac{2c^2}{5a}\right)$

Solution Bank

9 f *OQ* and *XP* are perpendicular, therefore $m_{OQ} \times m_{XP} = -1$

From part **d** 2 α ² 4 a ² $m_{OQ} = \frac{c^2}{4a}$ From part **e** 2 χP a^2 $m_{\text{XP}} = -\frac{c}{a}$ 2 σ^2 $\frac{1}{2} \times -\frac{1}{2} = -1$ 4 $\frac{1}{4} = 1$ $c^4 = 4a^4$ $c^2 = 2a^2$ as required 4 4 c^2 *c* a^2 a *c a* $x-\frac{c}{2}=-$ =

g From part **e** *R* has *y*-coordinate $\frac{2c^2}{5}$ 5 *c a* Substituting $c^2 = 2a^2$ gives: $(2a^2)$ 5*a* 5 4 5 c^2 2(2*a a a* $=\frac{4a}{4}$ =

Solution Bank

Challenge

For the parabola with equation $x^2 = 4ay$

 $x^2 = 4ay \implies y = \frac{x^2}{4}$ 4 $x^2 = 4ay \implies y = \frac{x}{4}$ *a* $= 4ay \Rightarrow y =$

The gradient of a tangent to a point on the parabola is: $\frac{dy}{dx} = \frac{x}{2}$

$$
\frac{1}{\mathrm{d}x} - \frac{1}{2a}
$$

Let the point where the tangent meets $x^2 = 4ay$ be (x_1, y_1)

Since (x_1, y_1) lies on $x^2 = 4ay$ it is of the form 2 $\frac{x_1}{4}$ $x_1, \frac{x}{4}$ $\left(x_1, \frac{x_1^2}{4a}\right)$

Therefore the gradient at x_1 is $\frac{x_1}{2a}$ *x a*

The equation of the tangent to $x^2 = 4ay$ is found using:

$$
y - y_1 = m(x - x_1) \text{ with } m = \frac{x_1}{2a} \text{ at } \left(x_1, \frac{x_1^2}{4a}\right)
$$

\n
$$
y - \frac{x_1^2}{4a} = \frac{x_1}{2a}(x - x_1)
$$

\n
$$
y = \frac{x_1x}{2a} - \frac{x_1^2}{2a} + \frac{x_1^2}{4a}
$$

\n
$$
y = \frac{x_1x}{2a} - \frac{x_1^2}{4a}
$$

For the parabola with equation $y^2 = 4ax$

$$
y^2 = 4ax \Rightarrow y = 2\sqrt{ax^{\frac{1}{2}}}
$$

The gradient of a tangent to a point on the parabola is:

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\sqrt{x}}
$$

Let the point where the tangent meets $y^2 = 4ax$ be (x_2, y_2) Since (x_2, y_2) lies on $y^2 = 4ax$ it is of the form $(x_2, 2\sqrt{ax_2})$

Therefore the gradient at x_2 is 2 *a x*

The equation of the tangent to $y^2 = 4ax$ is found using:

$$
y-y_2 = m(x-x_2) \text{ with } m = \frac{\sqrt{a}}{\sqrt{x_2}} \text{ at } \left(x_2, 2\sqrt{ax_2}\right)
$$

$$
y-2\sqrt{ax_2} = \frac{\sqrt{a}}{\sqrt{x_2}}(x-x_2)
$$

$$
y = \frac{\sqrt{a}x}{\sqrt{x_2}} - \sqrt{ax_2} + 2\sqrt{ax_2}
$$

$$
y = \frac{\sqrt{a}x}{\sqrt{x_2}} + \sqrt{ax_2}
$$

Solution Bank

So the equations of the tangent are:

$$
y = \frac{x_1 x}{2a} - \frac{x_1^2}{4a}
$$
 and $y = \frac{\sqrt{ax}}{\sqrt{x_2}} + \sqrt{ax_2}$

Since these represent the same line, comparing coefficients gives:

$$
-\frac{x_1}{2a} = \frac{\sqrt{a}}{\sqrt{x_2}} \text{ and } \frac{x_1^2}{4a} = \sqrt{ax_2}
$$

$$
\frac{x_1^2}{4a} = \sqrt{ax_2} \Rightarrow \sqrt{x_2} = \frac{x_1^2}{4a\sqrt{a}}
$$

Substituting $\sqrt{x_2} = \frac{x_1^2}{4a\sqrt{a}}$ into $-\frac{x_1}{2a} = \frac{\sqrt{a}}{\sqrt{x_2}}$ gives:

$$
-\frac{x_1}{2a} = \frac{\sqrt{a}}{\left(\frac{x_1^2}{4a\sqrt{a}}\right)}
$$

$$
-\frac{x_1}{2a} = \frac{4a^2}{x_1^2}
$$

$$
x_1^3 = -8a^3
$$

$$
x_1 = -2a
$$

Since (x_1, y_1) is of the form 2 $\frac{x_1}{4}$ $x_1, \frac{x}{4}$ $\left(x_1, \frac{x_1^2}{4a}\right)$

Substituting $x_1 = -2a$ into 2 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $2a$ 4 $y = \frac{x_1 x}{2a} - \frac{x_1^2}{4a}$ (the equation of the tangent to $x^2 = 4ay$) gives:

$$
y = \frac{(-2a)x}{2a} - \frac{(-2a)^2}{4a}
$$

$$
= -x - a
$$

So the equation of the line that is tangent to both parabolas is $y + x + a = 0$