Exercise 4E

1 a
$$P(3t^2, 6t)$$
 lies on $y^2 = 12x$

$$y = 2\sqrt{3}x^{2}$$

The gradient is

$$\frac{dy}{dx} = \sqrt{3}(x)^{-\frac{1}{2}}$$

When $x = 3t^{2}$

$$\frac{dy}{dx} = \frac{\sqrt{3}}{(3t^{2})^{\frac{1}{2}}}$$

$$= \frac{\sqrt{3}}{\sqrt{3}t}$$

$$= \frac{1}{t}$$

Find the equation of the tangent using:

$$y - y_1 = m(x - x_1) \text{ with } m = \frac{1}{t} \text{ at } (3t^2, 6t)$$

Gives:
$$y - 6t = \frac{1}{t} (x - 3t^2)$$
$$yt - 6t^2 = x - 3t^2$$

$$yt = x + 3t^2$$
 as required

b At $P(3t^2, 6t)$, the gradient of the tangent is $\frac{1}{t}$ so the gradient of the normal is -tFinding the equation of the normal using $y - y_1 = m(x - x_1)$ with m = -t at $(3t^2, 6t)$ gives: $y - 6t = -t(x - 3t^2)$ $xt + y = 3t^3 + 6t$ as required

2 a
$$P\left(6t, \frac{6}{t}\right), t \neq 0$$
 lies on $xy = 36$
 $y = 36x^{-1}$
The gradient is
 $\frac{dy}{dx} = -36x^{-2}$
When $x = 6t$
 $\frac{dy}{dx} = -36(6t)^{-2}$
 $= -\frac{36}{(6t)^2}$
1

 t^2

Solution Bank

Find the equation of the tangent using:

at

Pearson

$$y - y_{1} = m(x - x_{1}) \text{ with } m = -\frac{1}{t^{2}}$$

$$\begin{pmatrix} 6t, \frac{6}{t} \end{pmatrix}$$
Gives:
$$y - \frac{6}{t} = -\frac{1}{t^{2}}(x - 6t)$$

$$t^{2}y - 6t = -x + 6t$$

$$x + t^{2}y = 12t \text{ as required}$$

b At $P\left(6t, \frac{6}{t}\right)$, the gradient of the tangent is $-\frac{1}{t^2}$ so the gradient of the normal is t^2 Finding the equation of the normal using $y - y_1 = m(x - x_1)$ with $m = t^2$ at $\left(6t, \frac{6}{t}\right)$ gives: $y - \frac{6}{t} = t^2(x - 6t)$ $ty - 6 = t^3x - 6t^4$ $t^3x - ty = 6(t^4 - 1)$ as required

Solution Bank

4

- 3 a $P(5t^2, 10t), t \neq 0$ lies on $y^2 = 4ax$ Substituting $(5t^2, 10t)$ into $y^2 = 4ax$ gives: $(10t)^2 = 4a(5t^2)$ $100t^2 = 20at^2$ a = 5
 - **b** The parabola has equation

$$v^2 = 20 x \Longrightarrow 2\sqrt{5}$$

The gradient of a tangent to the parabola is:

$$\frac{dy}{dx} = \sqrt{5}x^{-\frac{1}{2}}$$

At $x = 5t^2$
$$\frac{dy}{dx} = \frac{\sqrt{5}}{(5t^2)^{\frac{1}{2}}}$$
$$= \frac{1}{t}$$

Finding the equation of the tangent using

$$y - y_{1} = m(x - x_{1}) \text{ with } m = \frac{1}{t} \text{ at}$$

$$(5t^{2}, 10t) \text{ gives:}$$

$$y - 10t = \frac{1}{t}(x - 5t^{2})$$

$$ty - 10t^{2} = x - 5t^{2}$$

$$yt = x + 5t^{2} \text{ as required}$$

c The tangent cuts the *x*-axis at y = 0 therefore

$$t(0) = x + 5t^{2}$$

$$x = -5t^{2}$$

So X has coordinates $(-5t^{2}, 0)$
The tangent cuts the y-axis at $x = 0$
therefore
 $ty = 0 + 5t^{2}$

$$y = 5t$$

So *Y* has coordinates (0, 5t)

Area_{OXY} =
$$\left|\frac{1}{2}\left(-5t^2\right)\left(5t\right)\right|$$

= $\left|12.5t^3\right|$

a
$$P(at^2, 2at), t \neq 0$$
 lies on $y^2 = 4ax$
 $y = 2\sqrt{a}x^{\frac{1}{2}}$
The gradient is
 $\frac{dy}{dx} = \sqrt{a}x^{-\frac{1}{2}}$
 $= \frac{\sqrt{a}}{\frac{1}{x^2}}$
When $x = at^2$
 $\frac{dy}{dx} = \frac{\sqrt{a}}{(at^2)^{\frac{1}{2}}}$
 $= \frac{1}{t}$
Finding the equation of the tangent using
 $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at
 $(at^2, 2at)$ gives:
 $y - 2at = \frac{1}{t}(x - at^2)$
 $ty - 2at^2 = x - at^2$

b From **a**, the tangent to any point, $(at^2, 2at)$, on the curve has equation $ty = x + at^2$.

 $ty = x + at^2$ as required

The point (-4*a*, 3*a*) lies on the tangents at *A* and *B*. Thus, for *A* and *B*: $t(3a) = (-4a) + at^2$ $at^2 - 3at - 4a = 0$ $t^2 - 3t - 4 = 0$ (t+1)(t-4) = 0t = -1 or t = 4

Therefore, the co-ordinates of *A* and *B* are (a, -2a) and (16a, 8a).

 $=-\frac{1}{t^{2}}$

 $\left(4t,\frac{4}{t}\right)$ gives:

 $y - \frac{4}{t} = -\frac{1}{t^2}(x - 4t)$

 $x + t^2 y = 8t$ as required

 $y^2 = 4ax$ is at x + a = 0,

 $t^2 y - 4t = -x + 4t$

Solution Bank

5 a
$$P\left(4t, \frac{4}{t}\right), t \neq 0$$
 lies on $xy = 16$
 $xy = 16 \Rightarrow y = 16x^{-1}$
The gradient of a tangent to the hyperbola
is
 $\frac{dy}{dx} = -16x^{-2}$
 $= -\frac{16}{x^2}$
At $x = 4t$
 $\frac{dy}{dx} = -\frac{16}{(4t)^2}$

Finding the equation of the tangent using

 $y - y_1 = m(x - x_1)$ with $m = -\frac{1}{t^2}$ at

b The directrix of a parabola of the form

hence X has coordinates (-4, 5)

so the directrix of $y^2 = 16x$ is at x + 4 = 0

5 c From a, the tangent to any point, $(4t^2, 8t)$, on the curve has equation $x + t^2 y = 8t$.

> X = (-4, 5) lies on the tangents at A and B.Thus, for A and B: $-4+5t^2 = 8t$ $5t^2 - 8t - 4 = 0$ (5t+2)(t-2) = 0 $t = -\frac{2}{5} \text{ or } t = 2$ Therefore, the co-ordinates of A and B are $(-\frac{8}{5}, -10)$ and (8, 2).

d From **c**, for the tangents to *H* which pass through *X*, $t = -\frac{2}{5}$ or t = 2. Using the equation found in **a**, $x + t^2 y = 8t$ gives: $x + \left(-\frac{2}{5}\right)^2 y = 8\left(-\frac{2}{5}\right)$ and $x + (2)^2 y = 8(2)$

So, the equations of the tangents are:

$$25x + 4y + 80 = 0$$
 and $x + 4y - 16 = 0$

Solution Bank

7

6 a $P(at^2, 2at), t \neq 0$ lies on $y^2 = 4ax$ $y = 2\sqrt{a}x^{\frac{1}{2}}$ The gradient of the tangent is $\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{ax^{-\frac{1}{2}}}$ $=\frac{\sqrt{a}}{x^{\frac{1}{2}}}$ When $x = at^2$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\left(at^2\right)^{\frac{1}{2}}}$ $=\frac{1}{t}$ Finding the equation of the tangent using $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at $(at^2, 2at)$ gives: $y-2at = \frac{1}{4}(x-at^2)$ $ty - 2at^2 = x - at^2$ $ty = x + at^2$ At the point where the tangent cuts the xaxis y = 0 so $t(0) = x + at^2$ $x = -at^2$ Therefore A has coordinates $(-at^2, 0)$ **b** At $x = at^2$ the gradient of the tangent is $\frac{1}{4}$ so the gradient of the normal is -tFinding the equation of the normal using y = y = m(r = r) with m = t at

$$y - y_1 = m(x - x_1) \text{ with } m = -t \text{ at}$$

$$(at^2, 2at) \text{ gives:}$$

$$y - 2at = -t(x - at^2)$$

$$tx + y = at^3 + 2at$$
At the point where the tangent cuts the x-axis $y = 0$ so
$$tx + (0) = at^3 + 2at$$

$$x = at^2 + 2a$$

Therefore *B* has coordinates $(at^2 + 2a, 0)$

6 c Area_{*APB*} = $\frac{1}{2} (at^2 + 2a - (-at^2))(2at)$ = $2a^2t(t^2 + 1)$

a
$$P(2t^2, 4t), t \neq 0$$
 lies on $y^2 = 8x$
 $y^2 = 8x \Rightarrow y = 2\sqrt{2}x^{\frac{1}{2}}$
The gradient of the tangent is
 $\frac{dy}{dx} = \sqrt{2}x^{-\frac{1}{2}}$
 $= \frac{\sqrt{2}}{x^{\frac{1}{2}}}$
When $x = 2t^2$
 $\frac{dy}{dx} = \frac{\sqrt{2}}{(2t^2)^{\frac{1}{2}}}$
 $= \frac{1}{t}$
At $x = 2t^2$ the gradient of the tangent is $\frac{1}{t}$
so the gradient of the normal is $-t$
Finding the equation of the normal using

 $y - y_1 = m(x - x_1) \text{ with } m = -t \text{ at}$ $(2t^2, 4t) \text{ gives:}$ $y - 4t = -t(x - 2t^2)$ $y - 4t = -tx + 2t^3$ $xt + y = 2t^3 + 4t \text{ as required}$

b Since (12, 0) lies on $xt + y = 2t^3 + 4t$ $(12)t + (0) = 2t^3 + 4t$ $2t^3 - 8t = 0$ $2t(t^2 - 4) = 0$ t = 0 or $t = \pm 2$ To find the coordinates of *R*, *S* and *T*, substitute t = 0, 2 and -2 into $(2t^2, 4t)$: When t = 0 (0, 0)When t = 2 (8, 8)When t = -2(8, -8)

7 c To find the equations of the normal at R, S and T, substitute t = 0, 2 and -2 into the general equation of the normal: When t = 0 $x(0) + y = 2(0)^3 + 4(0)$

y = 0
When t = 2

$$x(2) + y = 2(2)^3 + 4(2)$$

 $2x + y - 24 = 0$
When t = -2
 $x(-2) + y = 2(-2)^3 + 4(-2)$
 $2x - y - 24 = 0$
So the equations of the normal that pass
through (12, 0) are:

through (12, 0) are: y = 0, 2x + y - 24 = 0 and 2x - y - 24 = 0

8 a
$$P(at^2, 2at), t \neq 0$$
 lies on $y^2 = 4ax$

$$y^{2} = 4ax \Rightarrow y = 2\sqrt{ax^{\frac{1}{2}}}$$

The gradient of the tangent is
$$\frac{dy}{dx} = \sqrt{ax^{-\frac{1}{2}}}$$
$$= \frac{\sqrt{a}}{\frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}}$$
When $x = at^{2}$
$$\frac{dy}{dx} = \frac{\sqrt{a}}{(at^{2})^{\frac{1}{2}}}$$
$$= \frac{1}{t}$$
So at $x = at^{2}$ the gradient of the tangent is

 $=\frac{1}{t}$ Finding the equation of the tangent using $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at $(at^2, 2at)$ gives: $y - 2at = \frac{1}{t}(x - at^2)$ $x - yt + at^2 = 0$ The tangent cuts the y-axis at x = 0, so $x(0) - yt + at^2 = 0$ y = at

So Q has coordinates (0, at)

Solution Bank

- 8 b The focus of a parabola of the form $y^2 = 4ax$ is at (a, 0)
 - **c** *P* is the point $(at^2, 2at)$, *Q* is the point (0, at) and *S* is the point (a, 0)

From **a**, the gradient of *PS* is $\frac{1}{t}$.

The gradient of SQ is found using:

$$m_{SQ} = \frac{y_S - y_Q}{x_S - x_Q}$$

= $\frac{0 - at}{a - 0}$
= $-t$
 $m_{PQ} \times m_{SQ} = \frac{1}{t} \times -t$
= -1
Therefore PQ and SQ are perpendicular.

9 a $P(6t^2, 12t), t \neq 0$ lies on $y^2 = 24x$

$$y^{2} = 24x \Rightarrow y = 2\sqrt{6}x^{\frac{1}{2}}$$

The gradient of the tangent is
$$\frac{dy}{dx} = \sqrt{6}x^{-\frac{1}{2}}$$
$$= \frac{\sqrt{6}}{x^{\frac{1}{2}}}$$
When $x = 6t^{2}$
$$\frac{dy}{dx} = \frac{\sqrt{6}}{(6t^{2})^{\frac{1}{2}}}$$
$$= \frac{1}{t}$$
So at $x = 6t^{2}$ the gradient of the tangent is $\frac{1}{t}$

Finding the equation of the tangent using $y - y_1 = m(x - x_1)$ with $m = \frac{1}{t}$ at $(6t^2, 12t)$ gives: $y - 12t = \frac{1}{t}(x - 6t^2)$ $ty = x + 6t^2$ as required

Solution Bank

- 9 b The directrix of a parabola of the form $y^2 = 4ax$ is at x + a = 0so the directrix of $y^2 = 24x$ is at x + 6 = 0therefore X has coordinates (-6, 9)
 - **c** (-6, 9) lies on the tangent through *B* with general equation $ty = x + 6t^2$

Thus, $9t = -6 + 6t^2$ $6t^2 - 9t - 6 = 0$ $2t^2 - 3t - 2 = 0$ (2t+1)(t-2) = 0 $t = -\frac{1}{2}$ or 2 To find the possible coordinates of *B*, substitute $t = -\frac{1}{2}$ and t = 2 into $(6t^2, 12t)$

So,
$$B = \left(\frac{3}{2}, -6\right)$$
 or (24,24)