Further Pure Maths 1

Solution Bank

Exercise 3B

1 $x^{2}-7=0$ Let $f(x) = x^{2}-7$ f(2) = -3f(3) = 2

Since there is a change of sign between f(2) and f(3), the equation has a root in the interval [2, 3].

а	f(<i>a</i>)	Ь	f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
2	-3	3	2	2.5	-0.75
2.5	-0.75	3	2	2.75	0.5625
2.5	-0.75	2.75	0.5625	2.625	-0.109
2.625	-0.109	2.75	0.5625	2.6875	0.222
2.625	-0.109	2.6875	0.222	2.65625	0.055
2.625	-0.109	2.65625	0.055	2.640625	-0.027
2.640625	-0.027	2.65625	0.055	2.6484375	0.0142

Therefore x = 2.6 (1 d.p.)

2 a $x^3 - 7x + 2 = 0$

Let $f(x) = x^3 - 7x + 2$ f(2) = -4f(3) = 8

Since there is a change of sign between f(2) and f(3), one root of the equation lies in the interval [2, 3].

а	f(<i>a</i>)	b	f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
2	-4	3	8	2.5	0.125
2	-4	2.5	0.125	2.25	-2.35
2.25	-2.35	2.5	0.125	2.375	-1.22
2.375	-1.22	2.5	0.125	2.4375	-0.580
2.4375	-0.580	2.5	0.125	2.46875	-0.234
2.46875	-0.234	2.5	0.125	2.484375	-0.056
2.484375	-0.056	2.5	0.125	2.4921875	0.033
2.484375	-0.056	2.4921875	0.033	2.48828125	-0.011
2.48828125	-0.011	2.4921875	0.033	2.490234375	0.010

b

Therefore x = 2.49 (2 d.p.)

Further Pure Maths 1

Solution Bank

3 a $x^{3} + 2x^{2} - 8x + 3 = 0$ Let $f(x) = x^{3} + 2x^{2} - 8x + 3$ f(-5) = -32 f(0) = 3 f(1) = -2f(2) = 3

There is a change of sign between -5 and 0, between 0 and 1 and between 1 and 2. Therefore, one root lies between -5 and 0, one root lies between 0 and 1 and one root lies between 1 and 2. So, the largest positive root lies in the interval [1, 2].

b	
~	

a	f(<i>a</i>)	b	f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
1	-2	2	3	1.5	-1.125
1.5	-1.125	2	3	1.75	0.484
1.5	-1.125	1.75	0.484	1.625	-0.427
1.625	-0.427	1.75	0.484	1.6875	0.0007
1.625	-0.427	1.6875	0.0007	1.65625	-0.220
1.65625	-0.220	1.6875	0.0007	1.671875	-0.111

Therefore x = 1.7 (1 d.p.)

4 a
$$\frac{x}{2} - \frac{1}{x} = 0$$

Let $f(x) = \frac{x}{2} - \frac{1}{x}$
 $f(1) = -\frac{1}{2}$
 $f(2) = \frac{1}{2}$

Since there is a change of sign between f(1) and f(2), the equation has a root in the interval [1, 2].

b

а	f(<i>a</i>)	b	f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
1	-0.5	2	0.5	1.5	0.083
1	-0.5	1.5	0.083	1.25	-0.175
1.25	-0.175	1.5	0.083	1.375	-0.039
1.375	-0.039	1.5	0.083	1.4375	0.023

Therefore x = 1.4 (2 s.f.)

Further Pure Maths 1

Solution Bank

5 $6x - x^3 = 0$

а	f(<i>a</i>)	Ь	f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$
2	4	3	-9	2.5	-0.625
2	4	2.5	-0.625	2.25	2.109
2.25	2.109	2.5	-0.625	2.375	0.853
2.375	0.853	2.5	-0.625	2.4375	0.142

Therefore x = 2.4 (2 s.f.)