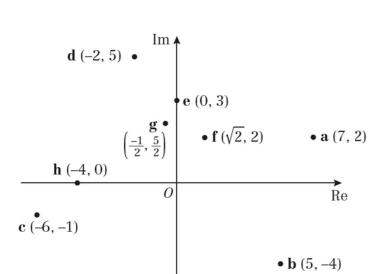
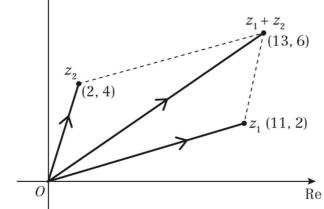
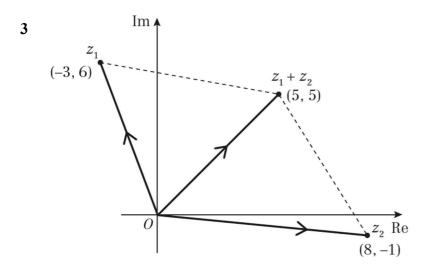
Further Pure Maths 1 Solution Bank

Exercise 1E





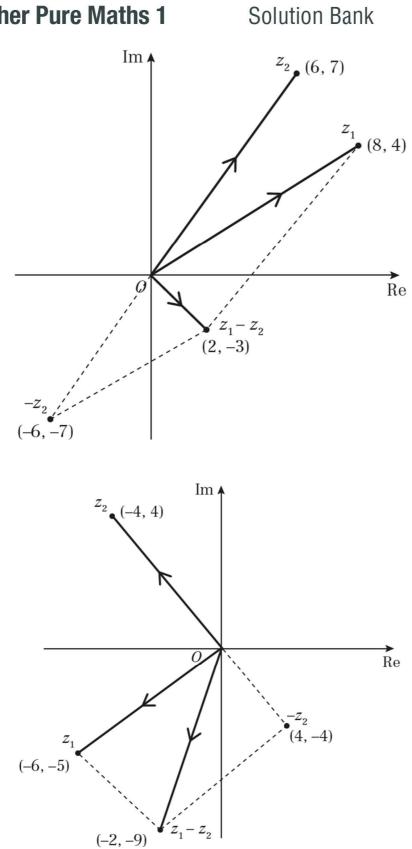


INTERNATIONAL A LEVEL

4

5

Further Pure Maths 1



© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Pearson

6 a $z_3 = z_1 + z_2$ -3 + 2i = (7 - 5i) + (a + bi) = (7 + a) + (-5 + b)iEquate real coefficients: -3 = 7 + a a = -10Equate imaginary coefficients: 2 = -5 + b b = 7Hence $z_2 = -10 + 7i$

Im
$$z_{2} = -10 + 7i$$

$$z_{3} = -3 + 2i$$

$$O$$
Re
$$z_{1} = 7 - 5i$$

7 a
$$z_3 = z_1 + z_2$$

 $-8 + 5i = (p + qi) + (9 - 5i)$
Equate real coefficients: $-8 = p + 9$
 $p = -17$
Equate imaginary coefficients: $5 = -5 + q$
 $q = 10$
 $z_1 = -17 + 10i$

b

$$z_{1} = -17 + 10i$$

$$z_{3} = -8 + 5i$$

$$O$$
Re
$$z_{2} = 9 - 5i$$

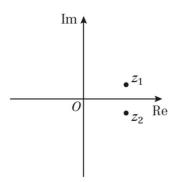
Solution Bank

Solution Bank

8 a $z^{2}-6z+10=0$ Solve by completing the square: $(z-3)^{2}-9+10=0$ $(z-3)^{2}=-1$ $z-3=\pm i$ $z=3\pm i$

So $z_1 = 3 + i$ and $z_2 = 3 - i$.

b



9 a
$$f(z) = 2z^3 - 19z^2 + 64z - 60$$

$$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 19\left(\frac{3}{2}\right)^2 + 64\left(\frac{3}{2}\right) - 60$$

= $2\left(\frac{27}{8}\right) - 19\left(\frac{9}{4}\right) + 64\left(\frac{3}{2}\right) - 60$
= $\frac{54}{8} - \frac{171}{4} + \frac{192}{2} - 60$
= $\frac{27}{4} - \frac{171}{4} + \frac{384}{4} - \frac{240}{4}$
= 0

b If $f(\frac{3}{2}) = 0$, then 2z - 3 is a factor of f(z). Use division to find the other factors:

$$\frac{z^2 - 8z + 20}{2z - 3)2z^3 - 19z^2 + 64z - 60}$$

$$2z^3 - 3z^2$$

$$-16z^2 + 64z$$

$$-16z^2 + 24z$$

$$40z - 60$$

$$40z - 60$$

$$0$$
So $2z^3 - 19z^2 + 64z - 60 = (2z - 3)(z^2 - 8z + 20)$
Either $2z - 3 = 0 \Rightarrow z = \frac{3}{2}$
or $z^2 - 8z + 20 = 0$

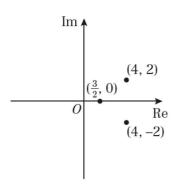
Solution Bank

9 b Solve by completing the square: $(z-4)^2 - 16 + 20 = 0$

$$(z-4)^{2} = -4$$
$$z-4 = \pm 2i$$
$$z = 4 \pm 2i$$

So the roots of f(z) = 0are $\frac{3}{2}$, 4+2i and 4-2i

c



Challenge

a $z^{6} = 1$ $z^{6} - 1 = 0$ $(z^{3} - 1)(z^{3} + 1) = 0$ (*)

Let $f(z) = z^3 - 1$. Since f(1) = 0, then z - 1 is a factor of f(z). Hence $f(z) = (z-1)(z^2 + bz + c)$ Equate coefficients of z^2 : 0 = b - 1b = 1Equate constants: -1 = -cc = 1So $f(z) = (z-1)(z^2 + z + 1)$ Let $g(z) = z^3 + 1$. Since g(-1) = 0, then z + 1 is a factor of g(z)Hence $g(z) = (z+1)(z^2 + pz + q)$ Equate coefficients of z^2 : 0 = 1 + pp = -1Equate constants: q = 1So $g(z) = (z+1)(z^2 - z + 1)$

Solution Bank

Challenge

a By (*),
$$0 = f(z)g(z)$$

 $0 = (z-1)(z^2 + z + 1)(z+1)(z^2 - z + 1)$

Either $z - 1 = 0 \Rightarrow z = 1$

or

$$z^{2} + z + 1 = 0$$

$$\left(z + \frac{1}{2}\right)^{2} - \frac{1}{4} + 1 = 0$$

$$\left(z + \frac{1}{2}\right)^{2} = -\frac{3}{4}$$

$$z + \frac{1}{2} = \pm \frac{\sqrt{3}}{2}i$$

$$z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

or
$$z+1=0 \Longrightarrow z=-1$$

or

$$z^{2}-z+1=0$$

$$\left(z-\frac{1}{2}\right)^{2}-\frac{1}{4}+1=0$$

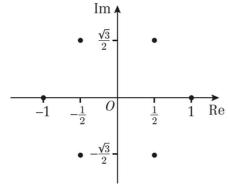
$$\left(z-\frac{1}{2}\right)^{2}=-\frac{3}{4}$$

$$z-\frac{1}{2}=\pm\frac{\sqrt{3}}{2}i$$

$$z=\frac{1}{2}\pm\frac{\sqrt{3}}{2}i$$

So the roots of $z^6 = 1$ are -1, 1, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $\frac{1}{2} - \frac{\sqrt{3}}{2}i$

b



Solution Bank

Challenge

c (0,1) and (0,-1) are on the unit circle.

Use Pythagoras' Theorem to check $\pm \frac{1}{2} \pm \frac{\sqrt{3}}{2}$ i also lie on a circle with centre (0,0) and radius 1.

$$\left(\pm\frac{1}{2}\right)^2 + \left(\pm\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$$

So all points lie on a circle with centre (0,0) and radius 1.