Further Pure Maths 1 Solution Bank

Exercise 1E

1

INTERNATIONAL A LEVEL

Further Pure Maths 1

P Pearson

6 a $z_3 = z_1 + z_2$ $-3+2i = (7-5i) + (a+bi)$ $=(7+a)+(-5+b)i$ **Equate real coefficients:** $a = -10$ $-3 = 7 + a$ Equate imaginary coefficients: $2 = -5 + b$ $b = 7$ Hence $z_2 = -10 + 7i$

$$
\mathbf{b}
$$

7 a $z_3 = z_1 + z_2$ $-8 + 5i = (p + qi) + (9 - 5i)$ Equate real coefficients: $-8 = p + 9$ $p = -17$ Equate imaginary coefficients: $5 = -5 + q$ $q = 10$ $z_1 = -17 + 10i$

 b

$$
z_1 = -17 + 10i
$$
\n
$$
z_3 = -8 + 5i
$$
\n
$$
z_2 = 9 - 5i
$$

Solution Bank

Solution Bank

8 a $z^2 - 6z + 10 = 0$ Solve by completing the square: $(z-3)^2 - 9 + 10 = 0$ $(z-3)^2 = -1$ $z - 3 = \pm i$ $z = 3 \pm i$

So $z_1 = 3 + i$ and $z_2 = 3 - i$.

 b

9 a
$$
f(z) = 2z^3 - 19z^2 + 64z - 60
$$

$$
f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 19\left(\frac{3}{2}\right)^2 + 64\left(\frac{3}{2}\right) - 60
$$

= 2\left(\frac{27}{8}\right) - 19\left(\frac{9}{4}\right) + 64\left(\frac{3}{2}\right) - 60
= \frac{54}{8} - \frac{171}{4} + \frac{192}{2} - 60
= \frac{27}{4} - \frac{171}{4} + \frac{384}{4} - \frac{240}{4}
= 0

b If $f\left(\frac{3}{2}\right) = 0$, then $2z - 3$ is a factor of $f(z)$. Use division to find the other factors:

$$
\frac{z^2 - 8z + 20}{2z^3 - 19z^2 + 64z - 60}
$$

2z³ - 3z²
-16z² + 64z
-16z² + 24z
40z - 60
40z - 60
0
So 2z³ - 19z² + 64z - 60 = (2z - 3)(z² - 8z + 20)

Either $2z-3=0 \Rightarrow z=\frac{3}{2}$ or $z^2 - 8z + 20 = 0$

Solution Bank

9 b Solve by completing the square:

 $(z-4)^2 - 16 + 20 = 0$ $(z-4)^2 = -4$ $4 = \pm 2i$ $z = 4 \pm 2i$ *z z* $-4)^{2} = -4 = \pm$

So the roots of $f(z) = 0$ are $\frac{3}{2}$, 4+2i and 4-2i

 c

Challenge

 a $(z^3-1)(z^3+1) =$ 6 6 3 1) $\int 3^3$ 1 $1 = 0$ $1\left(z^3 + 1 \right) = 0$ (*) *z z* $(z^3-1)(z^3)$ $=$ $-1=$ $(-1)(z^3+1)=$ Let $f(z) = z^3 - 1$. Since $f(1) = 0$, then $z-1$ is a factor of $f(z)$. Hence $f(z) = (z-1)(z^2 + bz + c)$ Equate coefficients of z^2 : $0 = b - 1$ $b = 1$ Equate constants: 1 $c = 1$ $-1 = -c$ So $f(z) = (z-1)(z^2 + z + 1)$ Let $g(z) = z^3 + 1$. Since $g(-1) = 0$, then $z + 1$ is a factor of $g(z)$ Hence $g(z) = (z+1)(z^2 + pz + q)$ Equate coefficients of z^2 : $0 = 1 + p$ $p = -1$ Equate constants: $q = 1$ So $g(z) = (z+1)(z^2 - z + 1)$

Solution Bank

Challenge

a By (*),
$$
0 = f(z)g(z)
$$

$$
0 = (z-1)(z^2 + z + 1)(z+1)(z^2 - z + 1)
$$

Either $z - 1 = 0 \implies z = 1$

or

$$
z^{2} + z + 1 = 0
$$

\n
$$
\left(z + \frac{1}{2}\right)^{2} - \frac{1}{4} + 1 = 0
$$

\n
$$
\left(z + \frac{1}{2}\right)^{2} = -\frac{3}{4}
$$

\n
$$
z + \frac{1}{2} = \pm \frac{\sqrt{3}}{2}i
$$

\n
$$
z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i
$$

or
$$
z+1=0 \Rightarrow z=-1
$$

or

$$
z^{2} - z + 1 = 0
$$

$$
\left(z - \frac{1}{2}\right)^{2} - \frac{1}{4} + 1 = 0
$$

$$
\left(z - \frac{1}{2}\right)^{2} = -\frac{3}{4}
$$

$$
z - \frac{1}{2} = \pm \frac{\sqrt{3}}{2}i
$$

$$
z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i
$$

So the roots of $z^6 = 1$ are -1 , 1, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $\frac{1}{2} - \frac{\sqrt{3}}{2}i$

 b

Solution Bank

Challenge

c $(0,1)$ and $(0,-1)$ are on the unit circle.

Use Pythagoras' Theorem to check $\pm \frac{1}{2} \pm \frac{\sqrt{3}}{2}$ i also lie on a circle with centre $(0,0)$ and radius 1.

$$
\left(\pm\frac{1}{2}\right)^2 + \left(\pm\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1
$$

So all points lie on a circle with centre $(0, 0)$ and radius 1.