Mark Scheme 4725 June 2007

PMT

1	EITHER $a = 2$ $b = 2\sqrt{3},$ OR $a = 2 b = 2\sqrt{3}$	M1 A1 M1 A1 M1 M1 A1 A1	4	Use trig to find an expression for a (or b) Obtain correct answer Attempt to find other value Obtain correct answer a.e.f. (Allow 3.46) State 2 equations for a and b Attempt to solve these equations Obtain correct answers a.e.f. SR \pm scores A1 only
2	$(1^{3} =)\frac{1}{4} \times 1^{2} \times 2^{2}$ $\frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$ $\frac{1}{4}(n+1)^{2}(n+2)^{2}$	M1 M1(indep) A1 A1	5	Show result true for <i>n</i> = 1 Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly Specific statement of induction conclusion
3	$3\Sigma r^{2} - 3\Sigma r + \Sigma 1$ $3\Sigma r^{2} = \frac{1}{2}n(n+1)(2n+1)$ $3\Sigma r = \frac{3}{2}n(n+1)$ $\sum_{n=0}^{\infty} 1 = n$	M1 A1 A1 A1 A1 A1 A1	6	Correct formula stated Correct formula stated Correct term seen Attempt to simplify Obtain given answer correctly
4	(i) $\frac{1}{2}$ $\begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$ (ii) $\frac{1}{2}$ $\begin{pmatrix} 2 & 0 \\ 23 & -5 \end{pmatrix}$	B1 B1 M1 M1(indep) A1ft A1ft	2 4 6	Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get 1 st column Divide by the determinant or solve 2 nd pair to get 2 nd column Attempt to use B ⁻¹ A ⁻¹ or find B Attempt at matrix multiplication One element correct, a.e.f, All elements correct, a.e.f. NB ft consistent with their (i)

4725

		1		
5	$(i) \frac{1}{r(r+1)}$	B1	1	Show correct process to obtain given result
	(iii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$	M1 M1 A1 B1ft M1	3	Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter
	$\frac{1}{n+1}$	A1 c.a.o.	3 7	State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii) Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= 9 - 4 = 5$ $\frac{3}{3} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ (ii) (a) $2u^{3} + 6u^{2} - 9u + 3 = 0$ $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	M1 A1 ft M1 A1 M1 A1	2	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer
		A1ft	8	Required expression is related to new cubic stated or implied -(their "b" / their "a")

7	(i)	M1		Show correct expansion process
/	(1)			
	(10)	M1	_	Show evaluation of a 2 x 2
	a(a - 12) + 32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	$\det \mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) EITHER	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
	OK	A1	3	consistent conclusion
		711	3	
		M1		det M = 0 so non-unique solutions
		A1		det M = 0 so non-unique solutions
				1 1 1 2
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		
	through (1, 0) with +ve slope	B1		
	In 1 st quadrant only	B1		
	(ii) Inside circle, below line,	B2ft	6	Sketch showing correct region
	above x-axis	DZIL		
	above x-axis		2	SR: B1ft for any 2 correct features
			8	

4725

9	$(\sqrt{2} 0)$	B1	1	Correct matrix
	(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$			
	(ii) Rotation (centre O), 45° , clockwise	B1B1B1	3	Sensible alternatives OK, must be a single transformation
	(iii)			single transformation
		B1	1	Matrix multiplication or combination of transformations
	(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	M1		
		A1	2	For at least two correct images For correct diagram
	(v) det $\mathbf{C} = 2$	B1		State correct value
	area of square has been doubled	B1	2	State correct relation a.e.f.
			9	
10	(i)	M1		Attempt to equate real and imaginary
	$x^2 - y^2 = 16$ and $xy = 15$			parts of $(x + iy)^2$ and $16+30i$
		A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in x^2 or y^2
	$\pm (5 + 3i)$	M1		Solve to obtain
	415			$x = (\pm) 5 \text{ or } y = (\pm) 3$
	(ii)	A1	6	Obtain correct answers as complex numbers
	$z = 1 \pm \sqrt{16 + 30i}$			
	6 . 2: 4 2:	M1*		Use quadratic formula or complete the square
	6 + 3i, -4 - 3i	A1	_	Simplify to this store
		*M1dep	5	Simplify to this stage Use answers from (i)
		A1 A1ft		Obtain correct answers
			11	

4725 Mark Scheme June 2007