

ADVANCED SUBSIDIARY GCE

4755/01

MATHEMATICS (MEI)

Further Concepts for Advanced Mathematics (FP1)

MONDAY 2 JUNE 2008 Morning

Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)

Graph paper

MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.

This document consists of 4 printed pages.

2

Section A (36 marks)

- 1 (i) Write down the matrix for reflection in the y-axis. [1]
 - (ii) Write down the matrix for enlargement, scale factor 3, centred on the origin. [1]
 - (iii) Find the matrix for reflection in the y-axis, followed by enlargement, scale factor 3, centred on the origin. [2]
- 2 Indicate on a single Argand diagram

(i) the set of points for which
$$|z - (-3 + 2j)| = 2$$
, [3]

(ii) the set of points for which
$$arg(z-2j) = \pi$$
, [3]

- (iii) the two points for which |z (-3 + 2j)| = 2 and $arg(z 2j) = \pi$. [1]
- 3 Find the equation of the line of invariant points under the transformation given by the matrix $\mathbf{M} = \begin{pmatrix} -1 & -1 \\ 2 & 2 \end{pmatrix}$. [3]
- **4** Find the values of A, B, C and D in the identity $3x^3 x^2 + 2 = A(x-1)^3 + (x^3 + Bx^2 + Cx + D)$. [5]
- 5 You are given that $\mathbf{A} = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 2 & 5 \\ 4 & 1 & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -1 & 0 & 2 \\ 14 & -14 & 7 \\ -5 & 7 & -4 \end{pmatrix}$.

(ii) Write down
$$\mathbf{A}^{-1}$$
. [2]

- 6 The roots of the cubic equation $2x^3 + x^2 3x + 1 = 0$ are α , β and γ . Find the cubic equation whose roots are 2α , 2β and 2γ , expressing your answer in a form with integer coefficients. [5]
- 7 (i) Show that $\frac{1}{3r-1} \frac{1}{3r+2} = \frac{3}{(3r-1)(3r+2)}$ for all integers r. [2]
 - (ii) Hence use the method of differences to find $\sum_{r=1}^{n} \frac{1}{(3r-1)(3r+2)}.$ [5]

© OCR 2008 4755/01 Jun08

Section B (36 marks)

- 8 A curve has equation $y = \frac{2x^2}{(x-3)(x+2)}$.
 - (i) Write down the equations of the three asymptotes. [3]
 - (ii) Determine whether the curve approaches the horizontal asymptote from above or below for
 - (A) large positive values of x,
 - (B) large negative values of x. [3]
 - (iii) Sketch the curve. [3]
 - (iv) Solve the inequality $\frac{2x^2}{(x-3)(x+2)} < 0$. [3]
- **9** Two complex numbers, α and β , are given by $\alpha = 2 2j$ and $\beta = -1 + j$.

 α and β are both roots of a quartic equation $x^4 + Ax^3 + Bx^2 + Cx + D = 0$, where A, B, C and D are real numbers.

- (i) Write down the other two roots. [2]
- (ii) Represent these four roots on an Argand diagram. [2]
- (iii) Find the values of A, B, C and D. [7]
- 10 (i) Using the standard formulae for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$, prove that

$$\sum_{r=1}^{n} r^{2}(r+1) = \frac{1}{12}n(n+1)(n+2)(3n+1).$$
 [5]

(ii) Prove the same result by mathematical induction. [8]

© OCR 2008 4755/01 Jun08