PMT

Mark Scheme 4755 June 2007

4755

Section	n A		
1(i)	$\mathbf{M}^{-1} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$	M1 A1 [2]	Attempt to find determinant
1(ii)	20 square units	B1 [1]	2× their determinant
2	$\left z - (3 - 2j)\right = 2$	B1 B1 B1 [3]	$z \pm (3-2j)$ seen radius = 2 seen Correct use of modulus
3	$x^{3} - 4 = (x - 1)(Ax^{2} + Bx + C) + D$ $\Rightarrow x^{3} - 4 = Ax^{3} + (B - A)x^{2} + (C - B)x - C + D$ $\Rightarrow A = 1, B = 1, C = 1, D = -3$	M1 B1 B1 B1 B1	Attempt at equating coefficients or long division (may be implied) For $A = 1$ B1 for each of B , C and D
4(2)	T.	[5]	
4(i)	$\beta^*_{\mathbf{X}}$	B1 B1 [2]	One for each correctly shown. s.c. B1 if not labelled correctly but position correct
4(ii)	$\alpha\beta = (1-2j)(-2-j) = -4+3j$	M1 A1 [2]	Attempt to multiply
4(iii)	$\frac{\alpha+\beta}{\beta} = \frac{(\alpha+\beta)\beta^*}{\beta\beta^*} = \frac{\alpha\beta^* + \beta\beta^*}{\beta\beta^*} = \frac{5j+5}{5} = j+1$	M1 A1 A1 [3]	Appropriate attempt to use conjugate, or other valid method 5 in denominator or correct working consistent with their method All correct

5	Scheme A		
	$w = 3x \Rightarrow x = \frac{w}{3}$	B1	Substitution. For substitution $x = 3w$ give B0 but then follow through for a maximum of 3 marks
	$\Rightarrow \left(\frac{w}{3}\right)^3 + 3\left(\frac{w}{3}\right)^2 - 7\left(\frac{w}{3}\right) + 1 = 0$	M1	Substitute into cubic
	$\Rightarrow w^3 + 9w^2 - 63w + 27 = 0$	A3	Correct coefficients consistent with x^3 coefficient, minus 1 each error
	OR	A1 [6]	Correct cubic equation c.a.o.
	Scheme B		
	$\alpha + \beta + \gamma = -3$ $\alpha\beta + \alpha\gamma + \beta\gamma = -7$	M1	Attempt to find sums and products of roots (at least two of three)
	$\alpha\beta\gamma = -1$,
	Let new roots be k , l , m then	M1	Attempt to use sums and products of
	$k+l+m=3(\alpha+\beta+\gamma)=-9=\frac{-B}{A}$		roots of original equation to find sums and products of roots in related
	$kl + km + lm = 9(\alpha\beta + \alpha\gamma + \beta\gamma) = -63 = \frac{C}{A}$		equation
	$klm = 27\alpha\beta\gamma = -27 = \frac{-D}{A}$	A3	Correct coefficients consistent with x^3 coefficient, minus 1 each error
	$\Rightarrow \omega^3 + 9\omega^2 - 63\omega + 27 = 0$	A1 [6]	Correct cubic equation c.a.o.
6(i)	$\frac{1}{r+2} - \frac{1}{r+3} = \frac{r+3-(r+2)}{(r+2)(r+3)} = \frac{1}{(r+2)(r+3)}$	M1 A1 [2]	Attempt at common denominator
6(ii)			
0(11)	$\sum_{r=1}^{50} \frac{1}{(r+2)(r+3)} = \sum_{r=1}^{50} \left[\frac{1}{r+2} - \frac{1}{r+3} \right]$	M1	Correct use of part (i) (may be implied)
	$= \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \dots$	M1,	First two terms in full
	$+\left(\frac{1}{51} - \frac{1}{52}\right) + \left(\frac{1}{52} - \frac{1}{53}\right)$	M1	Last two terms in full (allow in terms of <i>n</i>)
	$= \frac{1}{3} - \frac{1}{53} = \frac{50}{159}$	A1	Give B4 for correct without working Allow 0.314 (3s.f.)
		[4]	` /

7	$\sum_{r=1}^{n} 3^{r-1} = \frac{3^{n} - 1}{2}$		
	7-1 -		
	n = 1, LHS = RHS = 1	B1	
	Assume true for $n = k$	E1	Assuming true for <i>k</i>
	Next term is 3^k	M1	Attempt to add 3 ^k to RHS
	Add to both sides		
	$RHS = \frac{3^{k} - 1}{2} + 3^{k}$		
	$=\frac{3^k-1+2\times 3^k}{2}$		
	$=\frac{3\times3^k-1}{2}$		
	2		
	$=\frac{3^{k+1}-1}{2}$	A1	c.a.o. with correct simplification
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$	E1	Dependent on previous E1 and immediately previous A1
	and so true for all positive integers.	E1	Dependent on B1 and both previous E marks
		[6]	
			Section A Total: 36

4755

Section	n B		
8(i) 8(ii)	$(2, 0), (-2, 0), (0, \frac{-4}{3})$ x = 3, x = -1, x = 1, y = 0	B1 B1 B1 [3] B4 [4]	1 mark for each s.c. B2 for 2, -2 , $\frac{-4}{3}$ Minus 1 for each error
8(iii)	Large positive x , $y \rightarrow 0^+$, approach from above (e.g. consider $x = 100$) Large negative x , $y \rightarrow 0^-$, approach from below (e.g. consider $x = -100$)	B1 B1 M1 [3]	Direction of approach must be clear for each B mark Evidence of method required
8(iv)	Curve 4 branches correct Asymptotes correct and labelled Intercepts labelled	B2 B1 B1 [4]	Minus 1 each error, min 0

4755

0(*)	x=1-2j	D1	
9(i)	x = 1 - 2J	B1	
0(**)	Complex roots occur in conjugate pairs. A cubi	[1]	
9(ii)	has three roots, so one must be real. Or, valid		
	argument involving graph of a cubic or	E1	
	behaviour for large positive and large negative		
	x	[1]	
9(iii)			
) (III)			
	Scheme A		
	$(n + 1 + 2i)(n + 1 + 2i) = n^2 + 2n + 5$	M1	Attempt to use factor theorem
	$(x-1-2j)(x-1+2j) = x^2-2x+5$	Al	Correct factors
	$(x-\alpha)(x^2-2x+5) = x^3 + Ax^2 + Bx + 15$	A1(ft)	Correct quadratic(using their factors)
	comparing constant term:	M ₁	Use of factor involving real root
	$-5\alpha = 15 \Rightarrow \alpha = -3$	M1	Comparing constant term
		1411	Comparing constant term
	So real root is $x = -3$	A1(ft)	From their quadratic
	$(x+3)(x^2-2x+5) = x^3 + Ax^2 + Bx + 15$		
	$\Rightarrow x^{3} + x^{2} - x + 15 = x^{3} + Ax^{2} + Bx + 15$	M1	Expand LHS
		M1	Compare coefficients
	$\Rightarrow A = 1, B = -1$	A1 [9]	1 mark for both values
	OR Scheme B	[2]	
	Scheme B		
	Product of roots $= -15$	M1	
		A1	Attempt to use product of roots
	(1+2j)(1-2j) = 5	M1	Product is –15
		A1	Multiplying complex roots
	$\Rightarrow 5\alpha = -15$	A1	
	$\Rightarrow \alpha = -3$	A1	c.a.o.
	Sum of roots $= -A$		
	$\Rightarrow -A = 1 + 2j + 1 - 2j - 3 = -1 \Rightarrow A = 1$	M1	Attempt to use sum of roots
	Substitute root $x = -3$ into cubic	M1	Attempt to substitute, or to use sum
	$(-3)^3 + (-3)^2 - 3B + 15 = 0 \Rightarrow B = -1$		
	A = 1 and B = -1		
	A - 1 and $B1$	A1	c.a.o.
	OR	[9]	
	Scheme C		
	$\alpha = -3$	6	As scheme A, or other valid method
			The sentence 11, or other value inclined
	$(1+2j)^3 + A(1+2j)^2 + B(1+2j) + 15 = 0$	M1	Attempt to substitute root
	$\Rightarrow A(-3+4j) + B(1+2j) + 4-2j = 0$		
	$\Rightarrow -3A + B + 4 = 0 \text{ and } 4A + 2B - 2 = 0$	M1	Attempt to equate real and imaginary parts, or equivalent.
		A 1	
	$\Rightarrow A = 1 \text{ and } B = -1$	A1 [0]	c.a.o.
		[9]	
	24		
I			

PMT

Section	n B (continued)		
10(i)	$\mathbf{AB} = \begin{pmatrix} 1 & -2 & k \\ 2 & 1 & 2 \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} -5 & -2 + 2k & -4 - k \\ 8 & -1 - 3k & -2 + 2k \\ 1 & -8 & 5 \end{pmatrix}$ $= \begin{pmatrix} k - 21 & 0 & 0 \\ 0 & k - 21 & 0 \\ 0 & 0 & k - 21 \end{pmatrix}$	M1	Attempt to multiply matrices (can be implied)
	n = 21	A1 [2]	
10(ii)	$\mathbf{A}^{-1} = \frac{1}{k - 21} \begin{pmatrix} -5 & -2 + 2k & -4 - k \\ 8 & -1 - 3k & -2 + 2k \\ 1 & -8 & 5 \end{pmatrix}$	M1 M1 A1	Use of B Attempt to use their answer to (i) Correct inverse
	<i>k</i> ≠ 21	A1 [4]	Accept <i>n</i> in place of 21 for full marks
10 (iii)	Scheme A $ \frac{1}{-20} \begin{pmatrix} -5 & 0 & -5 \\ 8 & -4 & 0 \\ 1 & -8 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 12 \\ 3 \end{pmatrix} = \frac{1}{-20} \begin{pmatrix} -20 \\ -40 \\ -80 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} $	M1 M1	Attempt to use inverse Their inverse with $k = 1$
	x = 1, y = 2, z = 4 OR	A3 [5]	One for each correct (ft)
	Scheme B		
	Attempt to eliminate 2 variables Substitute in their value to attempt to find others x = 1, y = 2, z = 4	M1 M1 A3 [5]	s.c. award 2 marks only for
			x = 1, $y = 2$, $z = 4$ with no working.
			Section B Total: 36 Total: 72