4755 Mark Scheme June 2005

Mark Scheme 4755 June 2005

Section A			
1(i)	$\mathbf{A}^{-1} = \frac{1}{5} \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}$	M1 A1	Dividing by determinant
1(ii)	$\begin{bmatrix} \frac{1}{5} \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 22 \\ -21 \end{pmatrix}$	M1	Pre-multiplying by their inverse
	$\Rightarrow x = \frac{22}{5}, \ y = \frac{-21}{5}$	A1(ft) , A1(ft) [5]	Follow through use of their inverse No marks for solving without using inverse matrix
2	4-j, 4+j	M1 A1 [2]	Use of quadratic formula Both roots correct
	$\sqrt{17} \left(\cos 0.245 + j\sin 0.245\right)$ $\sqrt{17} \left(\cos 0.245 - j\sin 0.245\right)$	M1 F1, F1 [3]	Attempt to find modulus and argument One mark for each root Accept (r, θ) form Allow any correct arguments in radians or degrees, including negatives: 6.04 , 14.0° , 346° . Accuracy at least 2s.f. S.C. F1 for consistent use of their incorrect modulus or argument (not both, F0)
3	$\begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow x = 3x - y, \ y = 2x$ $\Rightarrow y = 2x$	M1 A1 A1	M1 for $\begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ (allow if implied)
		[3]	
4(i)	$\alpha + \beta = 2, \ \alpha\beta = 4$	B1	Both
4(ii)	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 4 - 8 = -4$	M1A1 (ft)	Accept method involving calculation of roots
4(iii)	Sum of roots = $2\alpha + 2\beta = 2(\alpha + \beta) = 4$	M1	Or substitution method, or method

Product of roots = $2\alpha \times 2\beta = 4\alpha\beta = 16$ $x^2 - 4x + 16 = 0$	A1(ft) [5]	involving calculation of roots The = 0, or equivalent, is necessary for final A1

Qu	Answer	Mark	Comment
Section	on A (continued)		
6	For $k = 1$, $1^3 = 1$ and $\frac{1}{4}1^2(1+1)^2 = 1$, so true for $k = 1$	B1	
	Assume true for $n = k$	B1	Assuming true for k , $(k+1)^{th}$ term - for alternative statement, give this
	Next term is $(k+1)^3$ Add to both sides	B1	mark if whole argument logically correct
	RHS = $\frac{1}{4}k^2(k+1)^2 + (k+1)^3$ = $\frac{1}{4}(k+1)^2 \left[k^2 + 4(k+1)\right]$	M1	Add to both sides
	$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$ $= \frac{1}{4}(k+1)^{2}((k+1)+1)^{2}$	M1	Factor of $(k+1)^2$ Allow alternative correct methods
	But this is the given result with $(k+1)$ replacing k . Therefore if it is true for k it is true for $(k+1)$. Since it is true for $k=1$ it is true for	A1	For fully convincing algebra leading to true for $k \Rightarrow$ true for $k + 1$
	$k = 1, 2, 3, \dots$	E1 [7]	Accept 'Therefore true by induction' only if previous A1 awarded
			S.C. Give E1 if convincing explanation of induction following acknowledgement of earlier error
7	$3\sum_{r} r^{2} - 3\sum_{r} r$ $= 3 \times \frac{1}{6} n(n+1)(2n+1) - 3 \times \frac{1}{2} n(n+1)$	M1,A 1	Separate sums
	$= \frac{1}{2}n(n+1)[(2n+1)-3]$	M1,A	Use of formulae
	$= \frac{1}{2}n(n+1)(2n-2)$ = $n(n+1)(n-1)$	1 M1	Attempt to factorise, only if earlier M marks awarded
		M1	Must be fully factorised
		A1 c.a.o.	
		[6]	
			Section A Total: 36

4755 Mark Scheme June 2005

8(i)	$x = \frac{2}{3}$ and $y = \frac{1}{9}$	B1,	-1 if any others given. Accept
	$x - \frac{1}{3} \text{ and } y - \frac{1}{9}$	B1, B1	min of 2s.f. accuracy
		[2]	inni oi 25.1. accuracy
8(ii)	Large positive $x, y \rightarrow \frac{1}{9}^+$	[-]	Approaches horizontal asymptote,
	(e.g. consider $x = 100$)	M1	not inconsistent with their (i)
	Large negative $x, y \rightarrow \frac{1}{9}$	1,11	not meonsistent with then (i)
	(e.g. consider $x = -100$)		Correct approaches
	(e.g. consider $x = 100$)	A1	T T T T T T T T T T T T T T T T T T T
8(iii)	Curve		Reasonable attempt to justify
		E1	approaches
	$x = \frac{2}{3}$ shown with correct approaches	[3]	
	3 shown with correct approaches		
	$y = \frac{1}{9}$ shown with correct approaches	B1(ft)	
	(from below on left, above on right).	(ונ)	
		B1(ft)	1 for each branch, consistent with
	(2, 0), (-2, 0) and (0, -1) shown	B1(ft)	horizontal asymptote in (i) or (ii)
			Dedicate and
		B1	Both x intercepts
	YA 12= 3	B1	y intercept (give these marks if coordinates
	, 3	[5]	shown in workings, even if not
			shown on graph)
			Shown on graph)
	y=/4		
	-2 12/3 /2 ×		
	1 1;1		
8(iv)	w ² 4		
	$-1 = \frac{x^2 - 4}{(3x - 2)^2} \Rightarrow -9x^2 + 12x - 4 = x^2 - 4$		
	$\Rightarrow 10x^2 - 12x = 0$		
	$\Rightarrow 2x(5x-6) = 0$		
	$\Rightarrow x = 0 \text{ or } x = \frac{6}{5}$	M1	Reasonable attempt at solving
	3		inequality
	From sketch,		
	,		
	$y \ge -1$ for $x \le 0$		Both values – give for seeing 0
	and $x \ge \frac{6}{5}$	A1	and $\frac{6}{5}$, even if inequalities are
			5 inequalities are
			wrong
		B1	
		TD1	For $x \le 0$
		F1	
		[4]	Lose only one mark if any strict
		[+]	inequalities given

9(i)	2 - j 2j	B1 B1	
9(iii)	$(x-2-j)(x-2+j)(x+2j)(x-2j)$ $=(x^2-4x+5)(x^2+4)$ $=x^4-4x^3+9x^2-16x+20$ So A = -4, B = 9, C = -16 and D = 20	[2] M1, M1 A1,A1	M1 for each attempted factor pair A1 for each quadratic - follow through sign errors Minus 1 each error – follow
		[8]	through sign errors only
OR	$-A = \sum \alpha = 4 \Rightarrow A = -4$	M1, A1	M1s for reasonable attempt to find sums
	$B = \sum \alpha \beta = 9 \Rightarrow B = 9$	M1, A1	S.C. If one sign incorrect, give
	$-C = \sum \alpha \beta \gamma = 16 \Rightarrow C = -16$	M1,	total of A3 for A, B, C, D values If more than one sign incorrect,
	$D = \sum \alpha \beta \gamma \delta = 20 \Rightarrow D = 20$	A1 M1, A1	give total of A2 for A, B, C, D values
		[8]	
OR	Attempt to substitute two correct roots into	M1	One for each root
	$x^4 + Ax^3 + Bx^2 + Cx + D = 0$	M1	
	Produce 2 correct equations in two unknowns	A2	One for each equation
	unknowns $A = -4, B = 9, C = -16, D = 20$	A4	One mark for each correct. S.C. If one sign incorrect, give total of A3 for A, B, C, D values
			If more than one sign incorrect, give total of A2 for A, B, C, D values

$\sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \sum_{r=1}^{n} \left[\frac{1}{r} - \frac{2}{(r+1)} + \frac{1}{(r+2)} \right]$ $= \left(\frac{1}{1} - \frac{2}{2} + \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5} \right) +$	M1	Give if implied by later working Writing out terms in full, at least three
	M1 A2	All terms correct. A1 for at least two correct
$= \frac{1}{1} - \frac{2}{2} + \frac{1}{2} + \frac{1}{n+1} - \frac{2}{n+1} + \frac{1}{n+2}$ $= \frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2}$	M1 A3	Attempt at cancelling terms Correct terms retained (minus 1 each error)
$= \frac{1}{2} - \frac{1}{(n+1)(n+2)}$	M1	Attempt at single fraction leading to given answer.
$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots$	[9]	
$= \frac{1}{2} \sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)} \right)$	M1	M1 relating to previous sum, M1 for recognising that $\frac{1}{(n+1)(n+2)} \to 0 \text{ as } n \to \infty$
$\Rightarrow \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots = \frac{1}{4}$	M1	(could be implied)
	A 1	
	[3]	
	$= \left(\frac{1}{1} - \frac{2}{2} + \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right) + \dots + \left(\frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}\right)$ $= \frac{1}{1} - \frac{2}{2} + \frac{1}{2} + \frac{1}{n+1} - \frac{2}{n+1} + \frac{1}{n+2}$ $= \frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2}$ $= \frac{1}{2} - \frac{1}{(n+1)(n+2)}$ $\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots$ $= \frac{1}{2} \sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right)$	$= \left(\frac{1}{1} - \frac{2}{2} + \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5}\right) + \dots + \left(\frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1}\right) + \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}\right)$ $= \frac{1}{1} - \frac{2}{2} + \frac{1}{2} + \frac{1}{n+1} - \frac{2}{n+1} + \frac{1}{n+2}$ $= \frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2}$ $= \frac{1}{2} - \frac{1}{(n+1)(n+2)}$ M1 $\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots$ $= \frac{1}{2} \sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right)$ M1 $\Rightarrow \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \frac{1}{3 \times 4 \times 5} + \dots = \frac{1}{4}$ A1