Qu	Answer	Mark	Comment
Sectio			- Comment
1	$Det \mathbf{M} = 8$	B1	
	$\mathbf{M}^{-1} = \frac{1}{8} \begin{pmatrix} 1 & -3 \\ 2 & 2 \end{pmatrix}$	B1	
	Area = 16 square units	B1 [3]	
2(i)	$\frac{1}{r+1} - \frac{1}{r+2} = \frac{(r+2) - (r+1)}{(r+1)(r+2)} = \frac{1}{(r+1)(r+2)}$	M1 A1 [2]	
2(ii)	$\sum_{r=1}^{n} \frac{1}{(r+1)(r+2)} = \sum_{r=1}^{n} \left[\frac{1}{(r+1)} - \frac{1}{(r+2)} \right]$	M1	
	$=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\dots$	M1	First two terms in full.
	$+\left(\frac{1}{n}-\frac{1}{n+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$	M1	Last two terms in full.
	$=\frac{1}{2}-\frac{1}{n+2}$	A1	Give B4 for correct without working.
	2 n+2	[4]	
3(i)	$3x^2 + 10x + 7 = 0$	M1	Quadratic from equation
	$x = \frac{-7}{3} \text{ or } x = -1$	A1, A1	1 mark for each solution.
		[3]	
3(ii)	Graph sketch or valid algebraic method.	G2 or M2	Sketch with $y = \frac{1}{x+2}$ and $y = 3x+4$
	$-2 > x \ge -\frac{7}{3}$	A1	or algebra to derive $0 \le \frac{(3x+7)(x+1)}{(x+2)}$ with
	or $x \ge -1$	A1	(x+2) consideration of behaviour near critical values of x .
		[4]	Lose one mark if incorrect inequality symbol used in $-2 > x \ge -\frac{7}{3}$
			Alternative For sensible attempt but vertical asymptote at $x = -2$ not considered, give M1 only.

Qu	Answer	Mark	Comment
4	$\sum_{r=1}^{n} r^{2} (r+2) = \sum_{r=1}^{n} r^{3} + 2 \sum_{r=1}^{n} r^{2}$	M1,A1	Separate sums
	$= \frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{3}n(n+1)(2n+1)$ $= \frac{1}{12}n(n+1)[3n(n+1)+4(2n+1)]$	M1,A1	Use of formulae. Follow through from incorrect expansion in line 1.
	$= \frac{1}{12} n(n+1) (3n^2 + 11n + 4)$ i.s.w.	M1 A1 [6]	Factorising
5	$w = x + 1 \Longrightarrow x = w - 1$	B1	Substitution. For substitution $w = x-1$ give B0 but then follow through.
	$\Rightarrow (w-1)^3 + 2(w-1)^2 + (w-1) - 3 = 0$ $\Rightarrow w^3 - 3w^2 + 3w - 1 + 2w^2 - 4w + 2 + w - 1 - 3 = 0$	M1 A1,	Substitute into cubic
	$\Rightarrow w^3 - w^2 - 3 = 0$	A1,A1 A1 [6]	Expansion Simplifying

5	Alternative		
3	Alternative $a + b + g = -2$ $ab + bg + ag = 1$ $abg = 3$ Coefficients: $w^{2} = -1$ $w = 0$ constant = -3 Correct final cubic expression $w^{3} - w^{2} - 3 = 0$	M1 A1 B1 B1 B1 [6]	Attempt to calculate these All correct
Qu	Answer	Mark	Comment
6	For $k = 1, 1 \times 2^{1-1}$ and $1 + (1-1)2^{1} = 1$, so true for $k = 1$	B1	
	Assume true for $n = k$	E1	Explicit statement: 'assume true for $n = k$ ' Ignore irrelevant work
	Next term is $(k+1)2^{k+1-1} = (k+1)2^k$	M1 A1	Attempt to find $(k+1)$ th term Correct
	Add to both sides RHS = $1+(k-1)2^k+(k+1)2^k$	M1	Add to both sides
		A1	Correct simplification of RHS

Section	n B		
7(i)	$x = \frac{3}{2}$ and -1	B1 [1]	Both.
7(ii)	x = 2, $x = -4$ and $y = 2$	B1, B1,B1 [3]	
7(iii) 7(iv)	Large positive x , $y \rightarrow 2^-$ (e.g. consider $x = 100$) Large negative x , $y \rightarrow 2^+$ (e.g. consider $x = -100$) Curve	B1 B1 B1 [3]	Evidence of method needed for this mark.
	3 branches Asymptotes marked Correctly located and no extra intercepts	B1 B1 B1 [3]	Consistent with their (iii)
7(v)	$(x+4)(x-2)$ $\Rightarrow 2x^2 + 4x - 16 = 2x^2 - x - 3$ $\Rightarrow x = \frac{13}{5}$	M1	Some attempt at rearrangement May be given retrospectively
	From sketch, $y \le 2$ for $x \ge \frac{13}{5}$ or $2 > x > -4$	A1, B1 [4]	B1 for $2 > x > -4$

8(i)	a+b=1+j	B1	
	$ab = (2-j)(-1+2j)$ $= -2+4j+j-2j^{2}$ $= 5j$	M1 A1	
	$\frac{a}{b} = \frac{(2-j)(-1-2j)}{(-1+2j)(-1-2j)} = \frac{-2-4j+j+2j^2}{5}$ $= \frac{-4}{5} - \frac{3}{5}j \text{ or } \frac{-4-3j}{5}$	M1, A1	Use of conjugate of denominator
	3 3 3	[6]	
8(ii)	$\begin{vmatrix} r = a = \sqrt{5} \\ q = \arg a = -0.464 \end{vmatrix}$	B1 B1 [2]	Accept degree equivalent (-26.6°)
8(iii)	Circle, centre 2 – j, radius 2	B1 B1 [2]	Argand diagram with circle. 1 mark for centre, one mark for radius.
8(iv)	Half line from $-1+2j$, making an angle of $\frac{\pi}{4}$ to the positive real axis.	B1 B1 [2]	Argand diagram with half line. One mark for angle.

Qu	Answer	Mark	Comment	
Sectio	n B (continued)			
9(i)	$\mathbf{M}^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}$	B1		
	(0 1)	[1]		
9(ii)	M ² gives the identity because a reflection, followed by a second reflection in the same mirror line will get you back where you started	E1		
	OR reflection matrices are self-inverse.	[1]		
9(iii)	$ \begin{pmatrix} 0.8 & 0.6 \\ 0.8 & -0.6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} $			
	$\Rightarrow 0.8x + 0.6y = x$ and $0.6x - 0.8y = y$	M1 A1	Give both marks for either equation or for a correct geometrical argument	
	Both of these lead to $y = \frac{1}{3}x$			
	as the equation of the mirror line.	A1		
		[3]		
9(iv)	Rotation, centre origin, 36.9° anticlockwise.	B1, B1 [2]	One for rotation and centre, one for angle and sense. Accept 323.1° clockwise or radian equivalents (0.644 or 5.64).	
9(v)	(1 0)	N/1		
	$\mathbf{MP} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	M1, A1 [2] B1		
9(vi)	y = 0	[1]		
	, ·	1	Section B Total: 36	
	Total: 72			