

Mathematics in Education and Industry

## **MEI STRUCTURED MATHEMATICS**

### FURTHER CONCEPTS FOR ADVANCED MATHEMATICS, FP1

# **Practice Paper FP1-C**

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

**TIME** 1 hour 30 minutes

#### INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

#### **INFORMATION**

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

#### Section A (36 marks)

1 Find the sum of the first *n* terms of the series  $(2\times3) + (3\times4) + (4\times5) + \dots + (n+1)(n+2).$  [5]

2 Solve the inequality 
$$(x+2) < \frac{4x}{(x-3)}$$
. [5]

| 3 | (i)   | If $\alpha + \beta + \gamma = -2$ , $\alpha\beta + \beta\gamma + \gamma\alpha = 9$ , and $\alpha\beta\gamma = -18$ , write down the cubic equation with roots $\alpha$ , $\beta$ and $\gamma$ . | [1] |
|---|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (ii)  | Use the factor theorem to identify one root of the equation                                                                                                                                     | [1] |
|   | (iii) | Show that the other two roots are imaginary.                                                                                                                                                    | [3] |

- 4 You are given that z = a + bj where *a* and *b* are real.  $z^*$  is the conjugate of *z*. Find all possible values of *z* if  $zz^* - 2jz = 7 - 4j$ . [6]
- 5 If the roots of the equation  $x^3 9x^2 + 3x 39 = 0$  are  $\alpha$ ,  $\beta$  and  $\gamma$ , show that the equation whose roots are  $\alpha 3$ ,  $\beta 3$  and  $\gamma 3$  is  $x^3 24x 84 = 0$  [7]
- 6 Given that  $\mathbf{M} = \begin{pmatrix} 5 & 8 \\ -2 & -3 \end{pmatrix}$ , prove by induction that, for any positive integer *n*,

$$\mathbf{M}^{n} = \begin{pmatrix} 1+4n & 8n \\ -2n & 1-4n \end{pmatrix} \,.$$
[8]

### Section B (36 marks)

| 7 | A curve has equation | <i>y</i> = | (4x+1)(x+16) |
|---|----------------------|------------|--------------|
| 1 |                      |            | $(x^2-4)$ .  |

(i) Write down the co-ordinates of the points where the curve crosses the co-ordinate axes.

(ii) Show that the equation can be written as 
$$y = 4 + \frac{65x + 32}{(x^2 - 4)}$$
 [3]

- (iii) Hence write down the equations of the 3 asymptotes of the curve. [3]
- (iv) Show that when x > 2, y > 4. [2]
- (v) Sketch the curve, showing clearly the behaviour of the curve for large positive and negative values of x. [3]

| 8 | The                                                                                       | matrix $\mathbf{M} = \begin{pmatrix} 7 & -3 \\ -4 & 6 \end{pmatrix}$ defines a transformation in the ( <i>x</i> , <i>y</i> )-plane.                                 |     |  |  |  |
|---|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|   |                                                                                           | A triangle S, with area 5 square units, is transformed by $\mathbf{M}$ into triangle T.                                                                             |     |  |  |  |
|   | (i)                                                                                       | Find the area of triangle T.                                                                                                                                        | [2] |  |  |  |
|   | (ii)                                                                                      | Find the matrix that transforms T into S.                                                                                                                           | [2] |  |  |  |
|   | Triangle U is obtained by rotating triangle S through 135° anticlockwise about the origin |                                                                                                                                                                     |     |  |  |  |
|   | (iii)                                                                                     | Find the matrix that transforms triangle S into triangle U, leaving the entries in surd form                                                                        | [3] |  |  |  |
|   | (iv)                                                                                      | Find the matrix that transforms triangle T into triangle U.                                                                                                         | [4] |  |  |  |
|   |                                                                                           |                                                                                                                                                                     |     |  |  |  |
| 9 | (i)                                                                                       | Write down the sum of the roots of the cubic equation $3z^3 - 4z^2 + 8z + 8 = 0$                                                                                    | [1] |  |  |  |
|   | You are given that $\alpha = 1 + \sqrt{3}j$ is a root of the equation.                    |                                                                                                                                                                     |     |  |  |  |
|   | (ii)                                                                                      | Write down another complex root, $\beta$ , and hence solve the equation.                                                                                            | [3] |  |  |  |
|   | (iii)                                                                                     | Describe the locus of points in the Argand diagram representing the complex numbers z for which $ z - \alpha  = \sqrt{3}$ . Sketch this locus on an Argand diagram. | [4] |  |  |  |
|   | (iv)                                                                                      | Find $\frac{\alpha}{\beta}$ in the form $a + bj$ and show that the point $z = \frac{\alpha}{\beta}$ lies on the locus in (iii).                                     | [4] |  |  |  |

[2]