

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

FURTHER CONCEPTS FOR ADVANCED MATHEMATICS, FP1

Practice Paper FP1-B

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

Section A (36 marks)

[2]

[4]

[1]

- 1 Solve the inequality $x^3 4x > 0$.
- 2 You are given that $A(x-1)(x-2) + Bx(x-1) + Cx(x-2) \equiv x^2 + x + 1$. Find the values of A, B and C.
- 3 You are given that the equation $x^3 + px^2 + qx + r = 0$ has roots α , $-\alpha$ and β .
 - (i) Show that $q = -\alpha^2$.
 - (ii) Show that r = pq. Show that this is true for the equation $x^3 + 7x^2 + 19x + 133 = 0$ but that it has only one real root. [5]
- 4 (i) Express 2 + 3j in the modulus-argument form (r, θ) where r and θ are given to two decimal places. [3]
 - (ii) Sketch on an Argand diagram the locus $|z z_1| = 2$ where $z_1 = 2 + 3j$. [3]

5 The matrices **A** and **B** are given by
$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$

- (i) Find A^{-1} and B^{-1} . [2]
- (ii) Show that $(AB)^{-1} = B^{-1}A^{-1}$. [4]

6 (i) Show that $(r+1)^2 \times r^2 - r^2 \times (r-1)^2 = 4r^3$. [2]

- (ii) Hence find $\sum_{n=1}^{n} r^3$. [4]
- 7 You are given the equation $x^3 3x^2 + 7x 5 = 0$.
 - (i) Show by substitution that x = 1 + 2j satisfies this equation. [3]
 - (ii) Write down a second root of the equation. [1]
 - (iii) Find the third root of the equation. [2]

Section B (36 marks)

8	A curve has equation	$x = \frac{4(2x-1)}{2}$
		$y = \frac{1}{(x+1)^2}$.

(i)	Write down the equation of the asymptote that is parallel to the <i>y</i> -axis.	[1]
(ii)	Find the second asymptote of the curve. Describe clearly the behaviour of the curve for large positive and negative values of x .	[5]
(iii)	Find the values of x for which $y = 1$.	[3]
(iv)	Sketch the curve, showing clearly where it cuts the <i>x</i> axis.	[3]

9 A reflection in a line *l* on the coordinate plane is represented by the matrix A where

$$\mathbf{A} = \begin{pmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{pmatrix}$$

- (i) Find the image of the point (3, 6).Hence write down the equation of the mirror line, *l*. [4]
- (ii) The matrix $\mathbf{T} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ represents a rotation. By considering the image of the point (3, 2), find the centre and the angle of the rotation. [3]
- (iii) Find TA. [2]
- (iv) Show that under the transformation **TA** the point (1, -3) is invariant. Hence state the equation of the line of invariant points under the transformation **TA**. [3]

10 The quadratic equation $z^2 + 6z + 25 = 0$ has complex roots α and β .

(i) Find the roots in the form p + qj. [3]
(ii) Find the modulus and argument of each root. Illustrate both roots on an argand diagram. [5]

(iii) Find the value of
$$\alpha^2 + \beta^2$$
.
Hence find the equation with roots α^2 and β^2 . [4]