

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

FURTHER CONCEPTS FOR ADVANCED MATHEMATICS, FP1

Practice Paper FP1-A

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

1 Solve the equation $x^2 + 3x + 4 = 0.$ [3]

2 Express
$$\frac{3+2j}{4-j}$$
 in the form $x + yj$. [3]

3 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 5 & -2 \end{pmatrix}$$

Find

(i)
$$A^2$$
, [2]

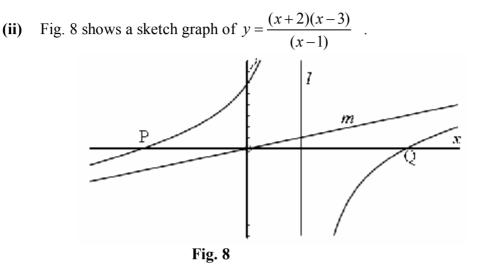
(ii)
$$A^{-1}$$
. [1]

- 4 The matrices **A**, **B** and **C** are given by $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}$
 - (i) Use A and B to prove that matrix multiplication is not commutative. [2]
 - (ii) Use A, B and C to give an example in which matrix multiplication is associative. [3]

5 (i) Show that
$$\frac{8}{x+1} - \frac{3}{x-4} \equiv \frac{5(x-7)}{(x+1)(x-4)}$$
 [2]

(ii) Hence solve the inequality
$$\frac{8}{x+1} - \frac{3}{x-4} > 5$$
. [5]

6 The cubic equation
$$x^3 + px^2 + qx + r = 0$$
 has roots α , β and γ .


- Find
- (i) $\alpha^2 + \beta^2 + \gamma^2$. [4]
- (ii) The equation which has roots $-\alpha$, $-\beta$ and $-\gamma$. [3]

7 Prove by induction that
$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$
. [8]

Section B (36 marks)

8 (i) You are given that
$$\frac{(x+2)(x-3)}{(x-1)} = Ax + B + \frac{C}{(x-1)}, x \neq 1.$$

Show that B = 0 and find A and C.

Write down the coordinates of P and Q, the points where the graph cuts the x axis, and the equation of the line l. [3]

(iii) The line *m* has equation y = x. Prove that the curve does not cross the line *m*. [3]

[6]

10	You are given the complex numbers	$z_1 = \sqrt{3} + 2j$ and $z_2 = 4$	$\left(\cos\frac{\pi}{6}\right)$	$+j\sin\frac{\pi}{6}$).	
----	-----------------------------------	-------------------------------------	----------------------------------	--------------------------	--

(i)	Find the modulus and argument of z_1 .	[2]
(ii)	Write z_2 in the form $a + bj$ where a and b are to be given exactly.	[2]
(iii)	Illustrate z_1 and z_2 on an Argand diagram.	[2]
(iv)	Find $z_2 - z_1$ and indicate this on your Argand diagram.	[2]
(v)	Describe the locus of the points, z, on the Argand diagram for which $ z - z_1 = \sqrt{3}$. Sketch the locus on your diagram.	[4]