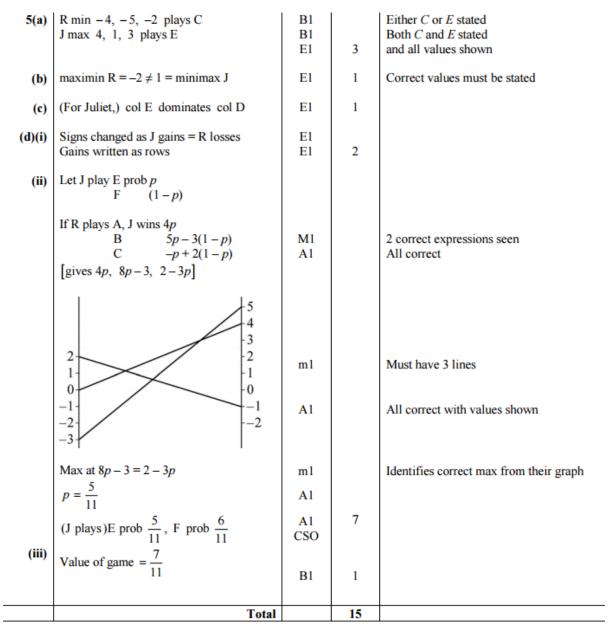
4(a)(i)	Let Roger play R_1 with probability p and			
	R_2 with probability $1 - p$			
	Expected gains:			
	$C_1: 7p - 2(1-p) = 9p - 2$	M1		one correct unsimplified
	$C_2: 3p - (1 - p) = 4p - 1$			
	$C_3: -5p + 4(1-p) = 4 - 9p$	Al		all correct unsimplified
	$\begin{array}{c} 4 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -3 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5$	MI Al		2 of their lines drawn correctly all correct and accurate for $0 \le p \le 1$ Condone lines not quite to $p = 1$ if using "accurate" intersection points on p-axis i.e. $\frac{2}{9} < \frac{1}{4}$ and $\frac{4}{9} \approx twice\frac{2}{9}$
	C_2 and C_3 lines give optimum 4p-1 = 4-9p			O de la companya de la Companya
		M1		ft their max point of region Condone 0.385 or 0.3846(15) must be
	$p = \frac{5}{13}$	A1		correct rounding if 3sf used
	Roger plays			
	$R_1 \frac{5}{13}$ of time and $R_2 \frac{8}{13}$ of time	E1	7	CAO
(ii)	Value of game = $4 \times \frac{5}{13} - 1 = \frac{7}{13}$	B1	1	AG or $\left(4-9\times\frac{5}{13}\right)=\frac{7}{13}$
(b)	Let Corrie play C_1 with prob p , C_2 with			must see correct calculation
(2)	prob q, C ₃ with prob $1 - p - q$			
	$R_1: 7p + 3q - 5(1 - p - q)$	M1		any correct expression
	$R_1: p + 3q - 3(1 - p - q)$ $R_2: -2p - q + 4(1 - p - q)$	IVII		any correct expression
				either equation correctly with coefficients
	$\Rightarrow 12p + 8q = 5\frac{7}{13}$	A1		of p and q correctly simplified
	$6p + 5q = 3 \frac{6}{13}$			
	a 9]	m1		may reason that $p(C_l) = 0$ from part(a)E1
	$\Rightarrow q = \frac{9}{13}$	A1CS O		with M1, A1, A1, E1 from 2×2 equations
	p = 0			$3r - 5s = \frac{7}{13}$
				$-r+4s=\frac{7}{13}$
				$-7 + 43 - \frac{1}{13}$
	\Rightarrow Optimal mixed strategy is C ₁ with prob 0			
				Condone 0.692
	C_2 with prob $\frac{9}{13}$			0.072
	C_3 with prob $\frac{4}{13}$	E1	5	CAO & 0.308
	Total		13	

JAN 2011

3(a)(i)	Row minima 2, -3 , x	B 1	1	Check for answers written on table
(ii)	Column maxima 3, 6, 4	B 1		Check for answers written on table
	$\begin{array}{ll} \text{Max (row min)} = 2\\ \text{Min (col max)} = 3 \end{array} \text{Or } 2 \neq 3 \end{array}$	M1		Condone Best (worst) =2 etc Worst (best) =3
	Since $2 \neq 3 \rightarrow$ no stable solution	Alcso	3	Both lines and statement must score previous B1, B1
(b)	$ \begin{array}{c} x < 2, x + 3 < 6, 3 < 4 \\ \rightarrow R_1 \text{ dominates } R_3 \end{array} $ Either of these	В1	1	hence Rhona should not play R ₃
(c)(i)	Let Rhona play R_1 with prob p and R_2 with prob $1 - p$			
	When C plays C_1 : exp value = 2 p + 3(1 - p) C_2 : 6 p - 3(1 - p) C_3 : 4 p - (1 - p) = -1 + 5 p	MI Al		= 3 - p = -3 + 9 p any two correct unsimplified all correct unsimplified
	3	MI Al		drawing two of their expected values for $0 \le p \le 1$ both vertical axes using same scale condone use of horizontal lines in paper
	-1 p			all three correct lines must see numbers on at least one vertical axis
	3 - p = -1 + 5 p	M1		choosing highest point of region
	$\rightarrow p = \frac{2}{3}$	A1		
	\rightarrow Rhona plays R ₁ $\frac{2}{3}$ of time			
	and $R_2 \frac{1}{3}$ of time	E1√	7	ft their p
(ii)	Value of game = $3 - \frac{2}{3} = \frac{7}{3}$	B1		or $-1 + \frac{10}{3} = \frac{7}{3}$
	Total		13	

3(b)(i)				
	\Rightarrow plays R ₂ with prob 1 – p			
	When Carla plays C ₁ ,			
	Rohan's expected gain $= 3p + (1-p)$ = $1+2p$			
	$C_2:5p+(-2)(1-p)=7p-2$	M1		at least 2 expected gains correct unsimplified
	$C_3: -p + 4(1-p) = 4 - 5p$	A1		all 3 correct unsimplified
	4	M1		at least 2 lines correct
		Al		all lines correct for $0 \le p \le 1$ and values
	-2			at 0 and 1 clear
				choosing highest point
	7p - 2 = 4 - 5p 12p = 6	M1		or using correct equation
	$\Rightarrow p = \frac{1}{2} \Rightarrow$ Rohan plays R ₁ 50% of the	A1cso		
	time and R_2 50% of the time			
	Value of game = $7 \times \frac{1}{2} - 2 = \frac{3}{2}$ AG	B1	7	or $4 - \frac{5}{2} = \frac{3}{2}$ must see working
(b)(ii)	When Rohan plays R_1 , expected loss for Carla is $3p + 5q + (-1)(1 - p - q)$			
	and when Rohan plays R_2 , expected loss			
	for Carla is $p + (-2)q + 4(1 - p - q)$	M1		either expression correct unsimplified
	$4p + 6q = \frac{3}{2} + 1$			
	$3p + 6q = 4 - \frac{3}{2}$	Al		correct simultaneous equations unsimplified
	$\Rightarrow p=0, q=\frac{5}{12}$	Al		condone 0.42 or better
	\Rightarrow Carla never plays C ₁ ,			
	plays C_2 with prob $\frac{5}{12}$			
	and plays C_3 with prob $\frac{7}{12}$	Elcso	4	Must have all 3 correct probabilities
	Total		15	

JAN 2012


3(a)	For each pair of strategies	E2,1		E1 for general idea of
	Roz gain + Colum gain = 0		2	Roz gain + Colum gain = 0
(b)	Colum's max are – 2, 3, – 1			must see these values for E1
	min(colum max) = -2	E1		
	\Rightarrow play safe is C ₁	B1	2	
				C, C, C,
(c)(i)	Delete R, (PI by further work)	M1		$-2 - 6 - 1 R_1$
0,00	Since R_3 dominates R_2	A1	2	$\begin{array}{cccccccc} C_1 & C_2 & C_3 \\ -2 & -6 & -1 & R_1 \\ -3 & 3 & -4 & R_3 \end{array}$
(ii)	Let Roz play R_1 with prob p			
	C ₁ expected gain: $-2p - 3(1-p) = p - 3$			
	$C_2: -6p + 3(1-p) = 3 - 9p$	M1		2 expressions unsimplified ft their matrix
	$C_3: -p-4(1-p) = 3p-4$	A1		all correct
	$\begin{array}{c} 3 \\ 0 \\ -3 \\ -4 \end{array}$	M1 A1		plotting 3 expected gains for $0 \le p \le 1$ correct gains plotted accurately
	Solving $p-3 = 3-9p$ $\Rightarrow 10p = 6$	ml		choosing highest point of 'their' region or correct pair solved
	$\Rightarrow 10p = 6$ $p = \frac{3}{5}$	Al		
	\Rightarrow Roz plays R ₁ with probability $\frac{3}{5}$ and			
	R_3 with probability $\frac{2}{5}$	Elcao	7	must see R1 and R3
	Total		13	

4(a)(i)	Row min $-6, -3, -5, -4$ Max (row min) = -3	M1		attempt to find maximin and minimax
	Ļ			condone one slip in values
	Col max 5, 4, -3	A1		all rows min and col max values correct
	Min(col max) = -3			and max (row min) = -3 identified
				and min (col max) = -3 identified
	$\max(\text{row min}) = \min(\text{col max}) = -3$			
	\Rightarrow game has a stable solution	El	3	full statement involving maximin and minimax and both values $= -3$
(ii)	Adam plays A_2 & Bill plays B_3	B1	1	
(iii)	Value of game for Bill is +3	B 1	1	
				Examiners must use the correct symbol for marks carried forward at the bottom of page 9 and top of page 10, ie ringed totals with arrows through them.
(b)(i)	(Never play) C_2 C_2 dominated by C_1 (-3>-4 and 2>1)	B1	1	correct strategy stated and correct reason condone $3 < 4$ and $-2 < -1$
(ii)	$C_1: 3p-2(1-p)$	M1		either correct unsimplified
	$C_3: -3p + 5(1-p)$	A1	2	both correct unsimplified $\{5p-2, 5-8p\}$
(iii)	3p - 2(1 - p) = -3p + 5(1 - p)	M1		equating their 2 expressions
	$\Rightarrow p = \frac{7}{13}$	A1	2	
(iv)	13			or $5-8 \times \frac{7}{13}$
	$=\frac{9}{13}$	B1	1	
	Total		11	

JAN 2013

2(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 CSO		Either correct, including correct values Both correct, written as equations PI by next line
	As Maximin (row) = Minimax (col) There is a stable solution	E1		Must have equation and statement and scored first 2 marks
	$ \begin{array}{ll} \mbox{(Play safe) (H)} & B \\ \mbox{(Play safe) (W)} & F \end{array} $	B1	4	Both correct
(b)	Saddle point (B, F)	B 1	1	
	Total		5	
6(a)	$R_c > R_B$	El	1	oe
	$R_{c} > R_{B}$ $A \begin{pmatrix} -2 & 0 & 3 \\ 4 & 1 & -1 \end{pmatrix}$ K plays A prob p C prob 1-p $P \text{ plays}$ D, K wins $-2p + 4(1-p) (=4-6p)$ E, K wins $1-p$ F, K wins $3p - 1(1-p) (=-1+4p)$ $4 \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	M1 A1 M1		Allow 2 expressions in unsimplified form All 3 correct Must have 3 lines
	-1	Al		With values shown
	Max at 1-p=-1+4p $p=\frac{2}{5}$	М1		Identifying correct maximum from their graph
	(K plays) A prob $\frac{2}{5}$, C prob $\frac{3}{5}$	Al		Both stated, coming from equating correct two equations and M2 scored
	Value of game = $\frac{3}{5}$	B 1	7	

6(c)	P plays D prob p $E " q$ $F " 1-p-q$			
	K plays A, P loses -2p + 3(1-p-q) = 3 - 5p - 3q	Ml		Either (unsimplified) expression correct
	K plays C, P loses 4p+q-1(1-p-q) = -1+5p+2q			
	$3-5p-3q = \frac{3}{5}$ $\frac{-1+5p+2q = \frac{3}{5}}{2}$ $-q = \frac{6}{5}$	ml		Equating BOTH of their expressions to value of their game
	$2 \qquad -q = \frac{6}{5}$ $q = \frac{4}{5}$	A1 CSO		Or for finding <i>p</i>
	$5p + \frac{8}{5} - 1 = \frac{3}{5}$ p = 0			
	P plays D prob 0 $E, \text{ prob } \frac{4}{5}$			
	F , prob $\frac{1}{5}$	E1	4	All three needed, must have scored previous A mark
	Alternative method			
	Probability of D is 0	(E1)		OE, might be earned in final line
	$3(1-p) = \frac{3}{5}$ or $p-1(1-p) = \frac{3}{5}$	(M1)		Or equating the expressions
	$p = \frac{4}{5}$	(m1)		
	$E \operatorname{prob} \frac{4}{5}$ $F \operatorname{prob} \frac{1}{5}$	(A1) CSO		
	Total		12	

2(a)	Row min -4 , 0, -5 Max (row min) = 0	M1		Attempt to find maximin and minimax
	Col max 5, 3, 0, 1			Accept 'F dominates G', col max $5, 3, 0$
	Min (col max) = 0	A1		All rowmin and colmax values correct and
				maximin and minimax identified
	Max (row min) = Min (col max) = 0 Hence game has a stable solution.	E1		Full statement involving maximin and minimax and both values = 0
	Hence game has a stable solution.			If using dominance:
				Reduction to 2x2 M1
				Reduction to 1x1 A1
				Final statement E1
	Alex plays B			
	Roberto plays F	B1	4	
(b)	Saddle point (B, F) ONLY	B1	1	
	Total		5	1
1				I
5(a)	A dominates B	E1	1	
(b)	Reduced matrix			
	<u>p q 1-p-q</u>	E1		Use of ' $1-p-q$ '
	A 4 1 -1 C -2 0 3			
	C -2 0 3			
	Mark plays A, Owen loses			
	4p + q + -1(1-p-q)	M1		One correct expression or reverse
	Mark plays C, Owen loses			
	-2p + 3(1-p-q)	A1		Both correct or reverse
	5p + 2q = 1.6	m1		Correct use of 0.6 (or -0.6)
				Condone simplified equations
	-5p - 3q = -2.4	A1		2 correct equations
	q = 0.8 p = 0	A1		At least 2 correct
	p = 0 1- $p-q = 0.2$			
	Owen plays D with prob 0	B1	7	All correct in context of D, E, F
	Owen plays E with prob 0.8		'	
	Owen plays F with prob 0.2			
	Total		8	