Mark Scheme 4737 June 2007

4737 Mark Scheme June 2007

SOLUTIONS 4737 D2 June 2007 FINAL

(i)		house	house 2	2 house 3	house 4		
	Α	500	400	700	600	B1	For copying the table, with row and column
	В	300	200	400	350		headings (accept consistent scalings)
	C	500	300	750	680		
	. D	0	0	0	0	B1 2	For dummy row (Daniel) with all equal values
(ii)	Redu	ice rows					
			100	0 300	200	MI	For a substantially correct attempt at reducing
			100	0 200	150		rows and columns
			200	0 450	380		
			0	0 0	0	A1	For correct reduced cost matrix (ft scalings)
						1	Do not treat as MR
			already re-			2	
	Cros	s out us	ng two line	es			
			100	300	200		
			100	200		M1	For covering zeros using minimum number of
			200	450		1	lines, clearly seen or implied from augmenting
- 1	-	→ 🗰	United States	Transporter.	STOLEN		
	A a.	ment by	100			M1 dep	For a single augmentation by 100 (ft their matri
	Aug	ment by	100			in dep	(accept either way of augmenting by 100)
			0	0 200	100	1	(arrays array or angularing of rec)
			ō	0 100		Al ft	For a correct augmented matrix (ft their matrix)
			100	0 350			
			0	100 0	0	3	
(ii)	Cros	s out usi	ng three lis	nes			
			<u> </u>	↓		\ v.	F
		92		200		MI	For covering zeros using minimum number of
		100	16	0 100 0 350			lines a second time, clearly seen or implied fron augmenting
				(C) (September 1)	200	·	augmenting
		,	Africa Service	A Property of the	24.410 W		
	Aug	ment by	50			M1 dep	For a single augmentation by 50 (ft their matrix)
			0	0 150	50	MII dep	(accept either way of augmenting by 50)
			0	0 50			(accept claim way of augmenting by 50)
			100	0 300		A1 ft	For a correct augmented matrix (ft their matrix)
				150 0	0		
	Com	plete ma	tching				
			0	0 150			
			° –	0 50		В1	For a complete matching achieved, must follow
			100	0 300		1	from an attempt at reducing or augmenting a
			50	150 0	0		matrix, not just implied from a list of the
						4	matching
(iii)	Allel		should				
		htenupp	should o			B1	For A = 1, B = 4, C = 2 (may also list D = 3) c
	Clea		should o	clean house	2	D. 2	
	Cost	= £1150	,			B1 13	For 1150 c.

4737 Mark Scheme June 2007

_	400		141	_	P - 1 - 1/1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
2	(i)	4p - (1-p)	M1		For $4p - 1(1-p)$ or equivalent, seen or implied	
1		= 5p - 1	A1		For $5p - 1$ or $-1 + 5p$	cao
1		2-16(1-)-6 7-	D.I		For any Goral of this committee	
1		-2p + 5(1-p) = 5 - 7p	Bl		Total and total and the second	cao
1		4(1-p) = 4 - 4p	B1	. 4		cao
1	(ii)	E		- 1	For correct structure to graph with a horizonta	
1		<u> </u>	MI		axis that extends from 0 to 1, but not more tha	ın
1		2.1		- 1	this, and with consistent scales.	
1		4				
1			A1	ft	For line $E = 5p - 1$ plotted from $(0,-1)$ to $(1,4)$)
1			A1	ft	For line $E = 5 - 7p$ plotted from $(0, 5)$ to $(1, -2)$)
1		0	A1	ft	For line $E = 4 - 4p$ plotted from $(0, 4)$ to $(1, 0)$	
1		-1		-	, , , , , , , , , , , , , , , , , , ,	´
1				4	In all three cases, correct or ft from (i)	
l		p = 0.5	B1		For this or ft their graph	
ı	(HI)	5(0.5) – 1	MI		For substituting their p into any of their equati	one
ı	(iii)	3(0.3) - 1	MII			
1					(must be seen, cannot be implied from value)	
1		= 1.5 points per game	Al			cao
1		Bea may not play her best strategy	B1	. 1	For this or equivalent	
1				3	Describing a mixed strategy that involves Z	
l	(iv)	1.5	B1	ft	Accept -1.5, ft from (iii)	
1		If Amy plays using her optimal strategy,				
1		Bea should never play strategy Z	MI		For identifying that she should not play Z	
1		Assuming that Bea knows that Amy will make a				
1		random choice between P and Q so that each has			For a full description of how she should play	
1		probablility 0.5, it does not matter how she chooses				
ı		between strategies X and Y.			(If the candidate assumes that Bea does not	know
1		between strategies A and 1.		-	'	
1					then Bea should play P with probability $\frac{7}{12}$ and	nd
1				3	Q with probability $\frac{5}{12}$).	
1				15	C 127	
				10		_

4737 Mark Scheme June 2007

3	(i)	A C E D F G	M1	A substantially correct network Condone arrows missing or wrong way round, no end and/or extra dummies Do NOT allow activity on node formulation A correct network, with arrows on at least the dummy activities, with no extra dummies and a single end point.
		A dummy is needed after C because D follows both B and C . A dummy is needed after D because F and G both follow D .	B1 B1 4	A valid explanation A valid explanation
	(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MI AI MI AI	A substantially correct forward pass Early event times correct (ft their network if possible) A substantially correct backwards pass Late event times correct (ft their network if possible)
		Minimum completion time = 14 days Critical activities are A, C, D, F	B1 BI	For 14 cao For these four activities and no others cao
			6	In both cases these need to be stated, not implied from the diagram
	(iii)	4 workers 2 0 0 2 4 6 8 10 12 14 days	M1 M1 dep	For a reasonable attempt at using the number of workers for the different activities Scales and labels required and some days with 4 workers. For a reasonable attempt with no overhanging blocks
			A1 3	For an entirely correct histogram
	(iv)	E cannot happen until after C has finished so must overlap with F. Start E immediately after C but delay the start of F for 1 day (until after E has finished).	B1 B1 2 15	Earliest finish for $E >$ latest start for F For delaying the start of F (by 1 day)

4	(i)	stage	state	action	working	minimax	1	ANSWERED ON INSERT
l			0	0	4	4	1	Values only credited when seen in table
l		1	1	0	3	3	1	values only created when seen in more
ì	Ì	1	2	0	2	2	1	
1		$\overline{}$		0	max(6,4) = 6		1	
l	l	l	0	1	max(2,3) = 3	3	1	
1		1		2	max(3,2) = 3		<u> </u>	
1	i	ı		0	max(2,4) = 4		м1	For calculating the maxima as 4, 4, 5
1	- 1	2	1	1	max(4,3) = 4	4	A1 2	For calculating the minimax as 4
ı	- 1	1		2	max(5,2) = 5		B1	For completing 4, 3, 2 in the brackets
1	ı	l		0	max(2,4) = 4		м1	For calculating the maxima as 4, 3, 4 (method)
1	1	ì	2	1 2	max(3,3) = 3 max(4,2) = 4	3	A1 3	For calculating the minimax as 3 cao
ı		<u> </u>	-	0	max(4,2) = 4 max(5,3) = 5	-	B1	For using their minimax values from stage 2
l	i	3		- - -	max(5,4) = 5	, ,	M1	For calculating the maxima for their values
1		_	ľ	2	max(2,3) = 3	3	A1 A1 4	For calculating the maxima as 5, 5, 3 cao For calculating the minimax as 3 cao
ı	(ii)				max(z,b) c	L	M1	For the value from their tabulation
1	(,	3				1	A1	For 3 (irrespective of their tabulation) cao
1							M1 dep	For reading route from their tabulation
l	(iii)	(0; 0) - (1; 1) - (2	2; 2) - (3; () (or in rev	erse)	A14	For this route (irrespective of their tabulation) cao
	(111)	(2; 0) 6 (1; 0)						For the graph structure correct
		(3; 0)	Ž (2:	2	(1; 1)	(0; 0)	Ml	For a substantially correct attempt at the weights (no more than two definite errors or omissions)
	Ì		2	3/3×	2		A1 3	For weights unambiguously correct
\sqsubseteq			(2; 2)		(1; 2)		16	

				_	
5	(i)				ANSWERED ON INSERT
1		S – E – I - T	Bl	1	For this route (not in reverse) cao
1	(ii)	6 litres per second	B1		For 6
1		From A to G	Bl	2	For direction AG
1	(iii)	6+2+4+0+8	MI		For a substantially correct attempt with $DF = 0$
1	` '		MI		For dealing with EI (= 8 or = 2 + 6)
1		= 20 litres per second	A1	3	For 20 cao
1		·			Method marks may be implied from answer
ı	(iv)	eg flow 5 along $S - A - G - T$	Ml		For describing a valid flow augmenting route
1		and 2 along $S-C-F-H-G-T$	A1	2	For correctly flowing 7 from S to T
1	- 1				
1		Diagram correctly augmented	MI		For a reasonable attempt at augmenting a flow
1	- 1		MI		For correctly augmenting a flow
1			A1	3	For a correct augmentation by a total of 7
1					,
1	- 1	Cut {S, A, B, C, D, E, F, G, H, I}, {T}	B1		For identifying cut or arcs GT and IT
1	- 1	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			, , ,
		This cut has a value of 13 and the flow already	Bl		For explaining how this shows that the flow is a
1	- 1	found is 6 + 7 = 13 litres per second.			maximum,
1		Or			but NOT just stating max flow = min cut
1		This is the maximum flow since the arcs GT and		2	
1		IT are both saturated, so no more can flow into T.		13	