4737 Decision Mathematics 2

1	(i)	$ \begin{array}{c} A \\ B \\ C \end{array} $ $ \begin{array}{c} C \\ C \end{array} $ $ \begin{array}{c} A \\ C \end{array} $ $ \begin{array}{c} C \\ C \end{array} $ $ \begin{array}{c} A \\ C \end{array} $ $ \begin{array}{c} C \end{array} $ $ \begin{array}{c} C \\ C \end{array} $ $ \begin{array}{c} C \\ C \end{array} $ $ \begin{array}{c} C \\ C \end{array} $ $ \begin{array}{c} C \end{array} $ $ \begin{array}{c} C \end{array} $ $ C \end{array} $ $ \begin{array}{c} C \end{array} $ $ C $	M1 A1	Any three stars paired to the correct rooms All correct $A \rightarrow 4, 6$ $B \rightarrow 2, 3, 5$ $C \rightarrow 1, 2$ $D \rightarrow 3, 4, 5$ $E \rightarrow 5, 6$ $F \rightarrow 4$	[2]
	(ii)	Faye A 1 B 2 C 3 D 4 E 5 F 6	B1	Accept F Incomplete matching shown correctly on a second diagram (need not see other arcs) Arc $F \rightarrow 1$ must NOT be shown as part of the matching	[2]
	(iii)	F=4-A=6-E=5-D=3-B=2-C=1 Arnie = Room 6 Diana = Room 3 Brigitte = Room 2 Edward = Room 5 Charles = Room 1 Faye = Room 4	B1 B1	This path indicated clearly This matching <u>listed</u> in any form (but NOT just shown as a bipartite graph)	[2]

(iv)	1 A 3 B 5 C 2 D 5 E 5 F 5	2 6 3 1 4 6 6	4 2 4 3 4 1 4 3 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 4 3 4	4 5 1 5 4 1 4 5 3 2 3 2 1 3	6 2 6 6 6 1 2			For reference only
	Reduce row 2	3 1 2 0 3 3 3 ee colun 1 2	0 3 3 2 2 0 nns 0 3 3 2 2 0	4 0 4 1 1 2 4 0 4 1 1 1 2	1 5 5 0 1 1 5 5 5 0 1		M1	Or reduce columns 1 4 3 0 4 1 3 2 1 3 0 5 2 0 2 3 4 5 3 3 0 2 1 5 3 5 3 2 1 0 3 5 3 0 2 1 Then reduce rows 1 4 3 0 4 1 3 2 1 3 0 5 2 0 2 3 4 5 3 3 0 2 1 5 3 5 3 2 1 0 3 5 3 2 1 0 3 5 3 0 2 1
							A1	cao with rows reduced first Follow through their reasonable reduced cost matrix if possible [3]
	Cross out (Augment b				allocati	ion	M1 M1 A1	Any valid choice of lines (max for theirs) Augmenting appropriately Augmentation completely correct (ft) [3]
	A = 1 $B = A$ rnie	= 5 C:	= 2 D	= 3 E	E = 6	<i>F</i> = 4	B1 B1	This allocation <u>listed</u> in any form, cao Arnie named (not just <i>A</i>), cao [2]
								Total = 14

2	(i)	6					B1	6	[1]
	(ii)	The total nu combination entry gives a	n is 10, si	ubtractii	ng 5 from e	each	B1	Total = 10 changes to total = 0 or subtracting 5 gives total = 0 for every cell	[1]
	(iii)	Philip Sanjiv	Liam Mike Nicola -1 0 1 -2 -3 -1	row min -1 -3	M1	Row for Sanjiv is optional Writing out pay-off matrix for zero-sum game (or explaining that the given matrix			
		Tina col max	1	0	-2 1	-2		will give the same play safes since each entry is a constant 5 more than in the zero-sum game	
		Play-safe for Play-safe for					B1 A1	P, cao, row minima need not be seen M, cao, col maxima need not be seen Accept any reasonable identification	
		Not stable si	ince -1 ≠	: 0			B1	Any equivalent reasoning Their row maximin ≠ their col minimax	
		If Team R p choose Lian		then Tea	am C shou	ld	B1	'Liam' or 'L', or follow through their choice of play safe for Team R	[5]
	(iv)	If the entry to the col max present so cominimax and the row	for Liam olumn M min for	n is at le I is still Philip is	ast as big a the columi s at least as	as at n s big as	M1 A1	Using either original values or augmented values. A reasonable explanation of either part A correct explanation of both	
		at present so						(in play safe row and not in play safe column, without further explanation \Rightarrow M1, A0)	[2]
	(iii)	Sanjiv's sco Sanjiv score choice of ca	es fewer l	hits than	Philip <u>for</u>		B1	Identifying dominance by P and explaining it or showing the three comparisons	[1]
	(vi)	4p + 6(1-p) or -1p + 1(1-p) + 5 = 6-2p M: $5p + 5(1-p) \text{ or } 0(p) + 0(1-p) + 5 = 5$						Using original or reduced values correctly Achieving given expression from valid working	
		N: $6p + 3(1-$					B1	5 and $3p+3$, cao	[3]

ANSWERED ON INSERT

							111 (8 () 2122	
	Stage 1 2 3 Minimax Minimax	route =			Minimax 1 3 2 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1	B1 M1 M1 A1 M1 A1	Minimax column for stage 1 shows 1, 3, 2 identified in some way 1, 3, 2 transferred to working column for stage 2 correctly Calculating maximum values in working column for stage 2 Minimax column for stage 2 shows 3, 3, 2 identified in some way (cao) Calculating maximum values in working column for stage 3, correct method Minimax column for stage 3 shows 2 identified in some way (cao) 2, cao Tracing their route (whatever problem solved) This route from correct working (using network ⇒ M0) All vertices labelled correctly	
(iii)	(3;0)	(2;0 3 2;1) 1 (2;2	2 3 2 5	(1;0)	(0;0)	B1 M1 A1	All vertices labelled correctly Arcs correct, need not be directed Condone stage boundaries shown Arc weights correct (be generous in interpretation of which weight is attached to which arc)	[3]
							Total =	12

ANSWERED ON INSERT

(•)	A ! 1		ANSWERED ON INSERT	1
(i)	A single source that joins to S_1 and S_2 Directed arcs with weights of at least 90 and 110, respectively T_1 and T_2 joined to a single sink	B1	Condone no directions shown	
	Directed arcs with weights of at least 100 and 200, respectively	B1	Condone no directions shown	[2
(ii)	If AE and BE were both full to capacity there would be 50 gallons per hour flowing into E , but the most that can flow out of E is 40 gallons per hour.	M1 A1	Considering what happens at <i>E</i> (50 into <i>E</i>) At most 40 out	[2
(iii)	40 + 60 + 60 + 140 = 300 gallons per hour	B1	300	[1
(iv)	30 + 20 + 30 + 20 + 40 + 40 + 20 + 40 = 240 gallons per hour	M1 A1	Evidence of using correct cut 240	[2
(v)	A feasible flow through network Flow = 200 gallons per hour Cut through arcs S_1A , S_1B , S_1C , S_2B , S_2C and	M1 A1		
	S_2D or cut $X = \{ S_1, S_2 \}, Y = \{ A, B, C, D, E, F, G, T_1, T_2 \}$	B1	Cut indicated in any way (May be on diagram for part (i))	[3
(vi)			May have working or cut shown on diagram	
	Flows into C go to $C_{\rm IN}$, arc of capacity 20 from $C_{\rm IN}$ to $C_{\rm OUT}$, and flows out of C go from $C_{\rm OUT}$.	B1 B1 B1	Into C ($S_1 = 40$, $S_2 = 40$, $D = 20$) Through C Out of C ($F = 60$, $G = 60$)	
	Cut $X = \{S_1, S_2, C_{IN}\}$ or $X = \{S_1, S_2, C_{IN}, D\}$ shows max flow = 140 gallons per hour	B1	140 (cut not necessary)	[4
<u>'</u>			Total =	14

ANSWERED ON INSERT

		,	_		ANSWERED ON INSERT	_
(i)	Activity	Duration	Immediate			
		(days)	predecessors			
	A	8	-			
	B	6	_			
			-			
	<u>C</u>	4	-			
	D	4	\boldsymbol{A}	D.1		
	E	2	AB	B1	Precedences correct for A, B, C, D	
	F	3	AB			
	G	4	D			
	H	5	DEF	B1	Precedences correct for E, F, G	
	I	3	$\frac{DEI}{F}$			
				B1	Precedences correct for H, I, J	[3]
	J	5	CF		, ,	
(ii)						
		8 8	12 12			
		/				
				M1	Forward pass, no more than one independent	
	00	8 9	12 12 17 17	1111	error	
				A1		
			//	AI	Forward pass correct (cao)	
			//			
	\	\				
		11 1	2 /			
			/	M1	Backward pass, no more than one	
			/		independent error	
			/	A1	Backward pass correct (cao)	[4]
			\	1 - 1 - 1	Zuch ward pass correct (cus)	L - J
			\checkmark			
			11 12			
				D1	17	
	Minimum p	roject duratio	n = 17 days	B1	17, cao	
	Critical activ	vities = ADI	H	B1	ADH, cao	[2]
(iii)					ANSWERED <u>ON GRAPH PAPER</u>	
				M1	A plausible histogram, with no holes or	
					overhanging blocks	1
						1
				A1	Correct shape	I
				Α1	Correct shape	
						1
						1
						[2]
(2)	Ever-				Dragodon and not reighted desertions are seen	1
(iv)	Example:	D 1 2 1	. 1 1 0 1 -	D.	Precedences not violated, durations correct	1
			ut delay C to day 6	B1	Dealing with A, B and C	1
			ut delay E to day 11	B1	Dealing with D , E and F	1
	Then, for ex	ample, start (<i>G</i> on day 12, <i>H</i> on	M1	Dealing with G , HI and J	1
		I and J on da		A1	A valid solution using 6 workers for 21 days	[4]
			•			1 -
I	1			1	Total =	15
					10tal =	13