Decision Maths 1

Solution Bank

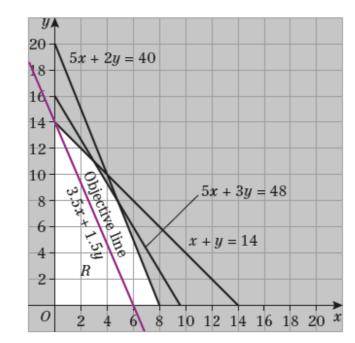
Chapter Review 7

1 a Flour: $200x + 200y \le 2800$ so $x + y \le 14$

Fruit: $125x + 50y \le 1000$ so $5x + 2y \le 40$

b Cooking time $50x + 30y \le 480$ so $5x + 3y \le 48$

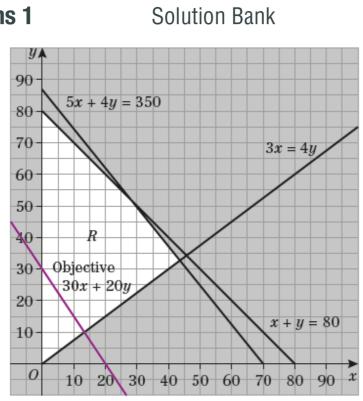
c



d
$$P = 3.5x + 1.5y$$

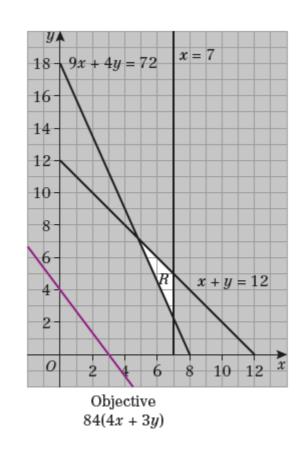
- e Integer solution required (6,5)
- **f** $P_{\text{max}} = \pounds 28.50$
- **2** a Storage: $0.08x + 0.08y \le 6.4$ so $x + y \le 80$
 - **b** The CD storage units cost 30 Riyal each and the DVD storage units cost 24 Riyal each. There is a budget of 2100 Riyal. $30x + 24y \le 2100$ $5x + 4y \le 350$
 - **c** Display $30x \leq 2 \times 20y$ $3x \leq 4y$

Decision Maths 1



- e Integer solution required (43,33) He should buy 43 CD storage units and 33 cassette storage units.
- **3** a i Total number of people $54x + 24y \ge 408 + 24 = 432$ so $9x + 4y \ge 72$
 - ii Number of adults is 24, at least 2 per coach, so $x + y \leq 12$
 - iii Number of large coaches, $x \leq 7$

b



Pearson

INTERNATIONAL A LEVEL

Decision Maths 1

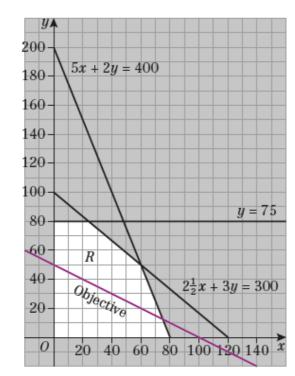
Solution Bank

- **3** c C = 1008x + 756y
 - **d** Objective line passes through (0,4)(3,0)
 - e Integer coordinates needed (7,3) so hire 7 large coaches and 3 small coaches cost = £3108
- 4 a $4x + 5y \leq 47$ $y \geq 2x - 8$

$$y \ge 2x - 4y - x - 8 \le 0$$
$$x, y \ge 0$$

- **b** Solving simultaneous equations y = 2x - 8 4x + 5y = 47gives $\left(6\frac{3}{14}, 4\frac{3}{7}\right)$
- **c i** For example where *x* and *y* are
 - types of car to be hired
 - number of people, etc

5



- a $2\frac{1}{2}x + 3y \leq 300 (5x + 6y \leq 600)$ $5x + 2y \leq 400$ $2y \leq 150 (y \leq 75)$
- **b** Maximise P = 2x + 4y
- **c** (30 75) *P*=360

Decision Maths 1

Solution Bank

5 d The optimal point is at the intersection of y = 75 and $2\frac{1}{2}x + 3y = 300$ So the constraint $5x + 2y \le 400$ is not at its limit. At (30,75), 5x + 2y = 300 so 100 minutes are unused.

Challenge

a Either solve matrix equation

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 160 \\ 25 \\ 100 \end{pmatrix}$$

or simply manipulate the equations

x + y + 2z = 160	(1)
x - z = 25	(2)
y + 2z = 100	(3)

e.g.

(1) - (3) $\Rightarrow x + y - 2z = 160 - 100 \Rightarrow x = 60$ from (2) $\Rightarrow z = x - 25 = 35$ from (3) $\Rightarrow y = 100 - 2z = 30$

Thus the solution is (60,30,35).

b Constraints define 5 different planes in space. Each vertex of the feasible region lies at an intersections of 3 of them. We do not know a priori which intersections we should consider. However, we can hypothesise that the tetrahedron lies strictly in the region $x, y \ge 0$

Compute the vertices by considering simultaneous equations as in part **a**.

$$x + y + 2z = 160, x - z = 25, y + 2z = 100 \implies x = 60, y = 30, z = 35$$
$$x - z = 25, y + 2z = 100, z = 15 \implies x = 40, y = 70, z = 15$$
$$x + y + 2z = 160, y + 2z = 100, z = 15 \implies x = 60, y = 70, z = 15$$
$$x + y + 2z = 160, x - z = 25, z = 15 \implies x = 40, y = 90, z = 15$$

All of them lie strictly in the region $x, y \ge 0$ so our hypothesis is true.

c We use the vertices testing method

Point	Value of P
x = 60, y = 30, z = 35	175
x = 40, y = 70, z = 15	275
x = 60, y = 70, z = 15	315
x = 40, y = 90, z = 15	335

Optimal value of P is 335, attained at point (40,90,15).