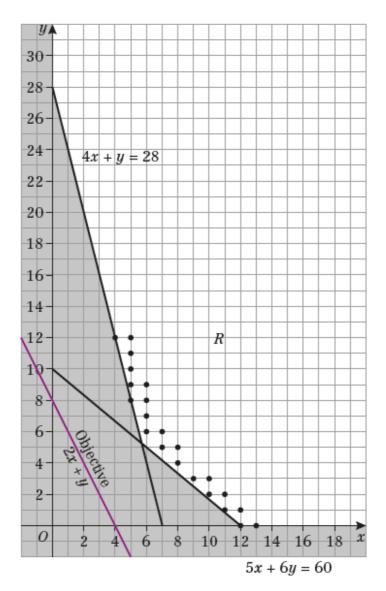
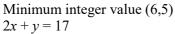
Solution Bank

Exercise 7D

1 a Maximum integer value (5,1) 3x + 2y = 17

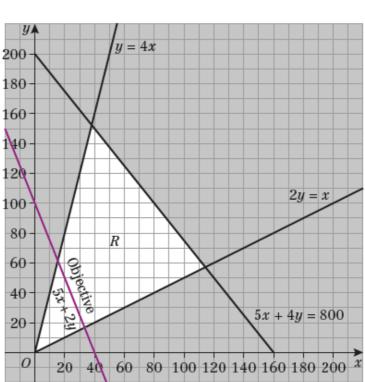
b





Solution Bank

1 c



Solving $2y = x$ and $5x + 4y = 800$ simultaneously gives $114\frac{2}{7}$, $57\frac{1}{7}$
Test integer values nearby.

Point	$2y \geqslant x$	$5x + 4y \leq 800$	5x + 2y
(114,57)	\checkmark	\checkmark	684
(114,58)	\checkmark	×	-
(115,57)	X	×	-
(115,58)	\checkmark	X	-

so optimal point is (114,57) value 684.

INTERNATIONAL A LEVEL

Decision Maths 1

Solution Bank

1 d



Solving 3x + 16y = 2400 3x + 5y = 1500simultaneously gives $\left(363\frac{7}{11}, 81\frac{9}{11}\right)$

Taking integer point

Point	$3x + 16y \ge 2400$	$3x + 5y \leq 1500$	2x + y
(363,81)	\checkmark	X	-
(363,82)	\checkmark	\checkmark	808
(364,81)	×	\checkmark	-
(364,82)	\checkmark	X	-

So optimal integer point is (363,82) value 808

INTERNATIONAL A LEVEL

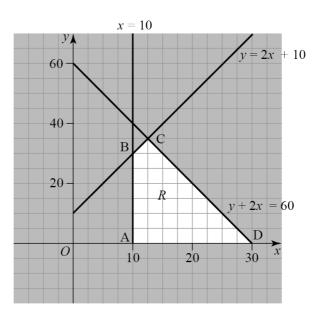
Decision Maths 1

Solution Bank

2 Identify vertices as intersections of appropriate lines. $x = 10, y = 0 \Rightarrow A = (10, 0)$ $y = 2x + 10, x = 10 \Rightarrow B = (10, 30)$

 $y = 2x + 10, y + 2x = 60 \Longrightarrow C = (12.5, 35)$

$$y + 2x = 60, y = 0 \Longrightarrow D = (30, 0)$$



As C is not an integer point so investigate integer points close to it.

Point	$y \leqslant 2x + 10?$	$y + 2x \leqslant 60?$	In <i>R</i> ?
(12,35)	35 > 34		No
(13,35)	35≼36	61 > 60	No
(12,34)	34≼34	58 < 60	Yes
(13,34)	34≼36	60 ≤ 60	Yes

Check values of the objective function at points A, B, D and C' = (12, 34), C'' = (13, 34)

Point	Coordinates	Value of $P = 5x + 3y$
A	x = 10, y = 0	50
В	x = 10, y = 30	140
<i>C'</i>	x = 12, y = 34	162
<i>C''</i>	x = 13, y = 34	167
D	x = 30, y = 0	150

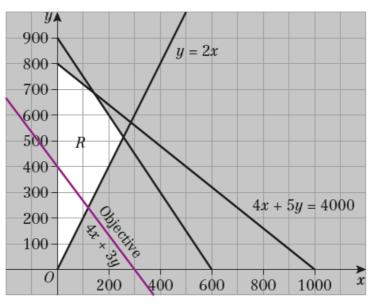
Maximal value of P we have found is 167 attained at point (13,34)

INTERNATIONAL A LEVEL

Decision Maths 1

Solution Bank

3 This is the problem formulated in Exercise 6A question **1**.



Intersection of 4x + 5y = 4000 and 3x + 2y = 1800giving $(142\frac{6}{7}, 685\frac{5}{7})$

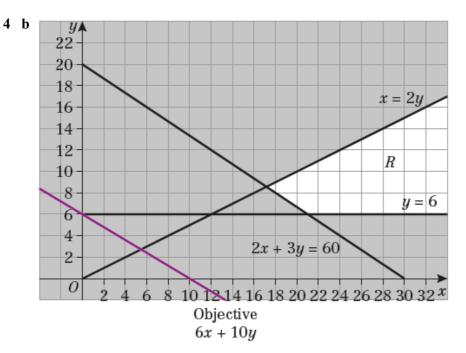
Testing nearby integer points

Point	$4x + 5y \leqslant 4000$	$3x + 2y \leq 1800$	80x + 60y
(142,685)	\checkmark	\checkmark	52460
(142,686)	\checkmark	\checkmark	52520
(143,685)	\checkmark	\checkmark	52540
(143,686)	X	X	

so maximum integer solution is 52 540 pennies at (143,685)

- **4** This is the problem formulated in Exercise 7A question **2**.
 - **a** Let x and y be the number of displays of type A and B, respectively. length of display at least $30m \Rightarrow x+1.5y \ge 30 \Rightarrow 2x+3y \ge 60$ at least twice as many A as $B \Rightarrow 2y \le x$ at least 6 of type $B \Rightarrow y \ge 6$ non-negativity $\Rightarrow x, y \ge 0$

Solution Bank



c We aim to minimise cost C = 6x + 10y, in pounds.

By objective line method we see that the optimal point lies at the intersection of y = 6and 2x + 3y = 60, i.e. x = 21, y = 6. Optimal value is $6 \times 21 + 10 \times 6 = 186$

Since it is an integer point, it also solves the original problem. The cost is minimized when the client buys 21 displays of type A and 6 displays of type B. Optimal cost is £186.

- 5 This is the problem formulated in Exercise 7A question 3.
 - **a** Let x and y be the number of games of Cludopoly and Trivscrab, respectively.

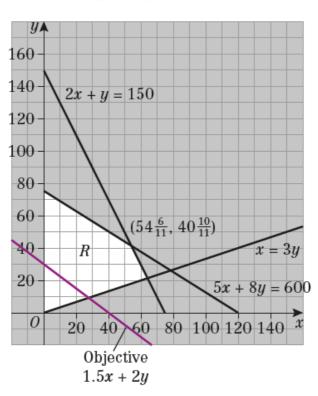
First pieces machine operates max 10h $\Rightarrow \frac{5}{60}x + \frac{8}{60}y \le 10 \Rightarrow 5x + 8y \le 600$ Second pieces machine operates max 10h $\Rightarrow \frac{8}{60}x + \frac{4}{60}y \le 10 \Rightarrow 2x + y \le 150$

At most 3 times as many Cludopoly as Trivago $\Rightarrow 3y \ge x$

Non-negativity $\Rightarrow x, y \ge 0$

Solution Bank

5 b



c We wish to maximise profit P = 1.5x + 2y.

By objective line method we find the optimal non-integer point as an intersection

 $5x + 8y = 600, 2x + y = 150 \Longrightarrow x = 54\frac{6}{11}, y = 40\frac{10}{11}$

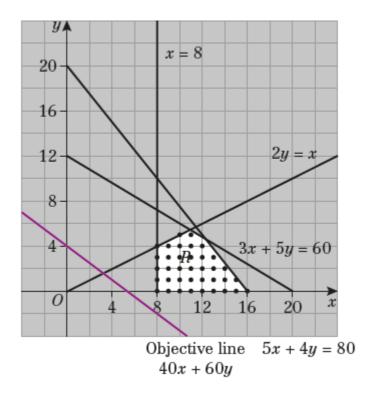
- .• .		•	• .	•
Investigate	neighbo	niring	integer	noints
mesugue	neignot	m	meger	Pomo

Points	$5x + 8y \leqslant 600?$	$2x + y \leqslant 150?$	1.5x + 2y
(54,50)	590≼600	148 <150	161
(54,41)	598 < 600	149≼150	163
(55,40)	599 ≤600	150≤150	162.5
(55,41)	603 > 600	_	_

Maximal value of profit we have found is \$163 achieved by producing 54 games of Cludopoly and 41 games of Trivscrab.

Solution Bank

6 Represent all inequalities on a diagram and find feasible region *R*.



Integer points are fairly sparse, so we can use Method 1 from Example 11 (p. 153), i.e. identify the optimal point directly by the ruler method.

Optimal integer solution is (11,5) and at this point S = 740.

Thus, the maximal amount of shelving is 740m and to achieve that the librarian should buy 11 bookcases of type 1 and 5 bookcases of type 2.

Using Method 1 from Example 13 shows you that the optimal integer solution is (11,5) giving 740 m of shelving.

Using Method 2 gives you the following solution:

Intersection of 3x + 5y = 60 and 5x + 4y = 80 giving $(12\frac{4}{13}, 4\frac{8}{13})$

Points	$3x+5y \leq 60$	$5x + 4y \leq 80$	40x + 60y
(12,4)	\checkmark	\checkmark	720
(12,5)	X	\checkmark	
(13,4)	\checkmark	х	
(13,5)	X	X	

Maximum value is 720 at (12,4).

In this instance, the solution produced by Method 2 is actually incorrect, but it requires a very particular set of circumstances to create this discrepancy. It is generally safe to assume that a solution found using Method 2 will be correct, but do check your graph to see whether there could be an alternative optimal integer solution.