INTERNATIONAL A LEVEL

Decision Maths 1

Solution Bank

Exercise 7C

1	a	Need intersection and $3x + 2y = 120$ (320,120)	4x + y = 1400 $4x + y = 1400$ $4x + y = 1400$ $4x + y = 1400$	Objective line passes through (200,0) and (0,400)
	b	(0,400)	<i>N</i> = 1600 ◀	Objective line passes through (400,0) and (100,0)
	c	Need intersection and $3x + 2y = 120$ $\left(171\frac{3}{7}, 342\frac{6}{7}\right)$	a of $x + 3y = 1200$ $P = 514\frac{2}{7}$	Objective line passes through (200,0) and (0,200)
\	d	(350,0)	<i>Q</i> = 2100	Objective line passes through (100,0) and (0,600)
2	a	(0,90)	<i>E</i> = 90	
	b	Need intersection (100.8,16.8)	a of $6y = x$ and $3x + 7y = 420$ F = 168	
	c	Need intersection $3x + 7y = 420$	a of $9x + 10y = 900$	Objective line passes through (80,0) and (0,60)
		$\left(63\frac{7}{11}, 32\frac{8}{11}\right)$	$G = 321\frac{9}{11}$	
	d	Same intersection	h as in b (100.8,16.8) $H = 201.6$	✓ Objective line passes through✓ (120,0) and (0,20)
3	a	Need intersection $(16\frac{2}{3}, 10)$	a of $3x + y = 60$ and $5y = 3x$ $J = 56\frac{2}{3}$	
	b	Need intersection $\left(15\frac{15}{29}, 62\frac{2}{29}\right)$	a of $y = 4x$ and $9x + 5y = 450$ $K = 77 \frac{17}{29}$	
	c	Need intersection $\left(8\frac{4}{7}, 34\frac{2}{7}\right)$	a of $3x + y = 60$ and $y = 4x$ $L = 85\frac{5}{7}$	✓ Objective line passes through (10,0) and (0,60)
	d	Need intersection (37.5,22.5)	a of $9x + 5y = 450$ and $5y = 3x$ M = 97.5	Objective line passes through (40,0) and (0,80)

Decision Maths 1

Solution Bank

- **4** a C
 - **b** A
 - **c** B
 - d D
 - **e** C
 - f A

 - **g** B
 - **h** D
 - **i** C
 - j D
- 5 Let x be the mass of indoor feed and y be the mass of outdoor feed, in kilograms. Recall that we want to maximise P = 7x + 6y, subject to
 - $x + 2y \leqslant 500,$
 $2x + y \leqslant 500,$
 - $x + y \leqslant 300,$
 $y \leqslant 3x,$
 - $y \leqslant 5x, \\ y \ge 0 \quad x \ge 50,$

Draw the diagram including all constraints and mark the feasible region as *R*. Objective line passes through (0,350) and (300,0). Maximum point is (200,100). $P_{\text{max}} = 2000$

Using the ruler method, we identify that optimal point is (200,100) At this point P = 2000. Hence, we conclude that in order to maximise its profit, the company should produce 200kg of indoor feed and 100kg of outdoor feed. The profit will be £2000.

INTERNATIONAL A LEVEL

Decision Maths 1

Solution Bank

6 Decision variables: x = hours of work for factory R, y = hours of work for factory SRecall that we wish to minimise C = 300x + 400y subject to:

 $5x + 4y \ge 100$

 $2x + 3y \ge 60$ $2x \ge y$ $2y \ge x$ $x, y \ge 0$

Draw the diagram including all constraints and mark the feasible region as R.

We can use the ruler method; in the picture we have drawn an objective line passing through points (0,15) and (20,0).

This way, we identify the optimal point as the intersection of lines 5x + 4y = 100 and 2x + 3y = 60By solving simultaneous equations, we find the optimal point $\left(8\frac{4}{7}, 14\frac{2}{7}\right)$ and optimal value $C = 8285\frac{5}{7}$

We conclude that in order to minimise operating cost, factory R should work for $8\frac{4}{7}$ h and factory S for $14\frac{2}{7}$

7 a

Decision Maths 1

Solution Bank

7 b

Vertices	C = 3x + 2y
(0,160)	320
(40,80)	280
(90,30)	330
(180,0)	540

so minimum is (40,80) value of C = 280

- **c** (90,30) $C_1 = 270$
- **d** C_2 is parallel to x + y = 120 so all points from A to B are optimal points.

b i $(13\frac{1}{2}, 6\frac{2}{3})$ $P = 33\frac{1}{3}$

ii $\left(34\frac{2}{37}, 17\frac{1}{37}\right)$ $Q = 221\frac{13}{37}$

Decision Maths 1

Solution Bank

9 a

- **b** i We can identify 4 vertices of the feasible region as intersections of respective lines $y = 10x, 2y x = 100 \Rightarrow A = \left(5\frac{5}{19}, 52\frac{12}{19}\right)$
 - $y = 10x, 2x + y = 400 \Longrightarrow B = (33\frac{1}{3}, 333\frac{1}{3})$

 $x = 120, 2x + y = 400 \Longrightarrow C = (120, 160)$

 $x = 120, 2y - x = 100 \Longrightarrow D = (120, 110)$

Now we apply the vertex testing method.

Vertex	Coordinates	Value of $z = 5x + y$
A	$x = 5\frac{5}{19}, y = 52\frac{12}{19}$	$78\frac{18}{19}$
В	$x = 33\frac{1}{3}, y = 333\frac{1}{3}$	500
С	x = 120, y = 160	760
D	x = 120, y = 110	710

Maximal value of z in the feasible region is 760

- ii Minimal value of z in the feasible region is $78\frac{18}{19}$
- c We apply the vertex testing method to the points identified in part b.

Vertex	Coordinates	Value of $x + 2y$
A	$x = 5\frac{5}{19}, y = 52\frac{12}{19}$	$110\frac{10}{19}$
В	$x = 33\frac{1}{3}, y = 333\frac{1}{3}$	700
С	x = 120, y = 160	440
D	x = 120, y = 110	340

Maximal value of x + 2y is 700

INTERNATIONAL A LEVEL

Decision Maths 1

Solution Bank

Challenge

a Sketch the feasible region by noting the boundary line corresponding to $x^2 + y \le 10$ is a parabola.

b Objective function is 3x + y, so gradient of an objective line is -3. When we apply the ruler method we observe that at the optimal point parabola is tangent to the objective line.

For $x^2 + y = 10$ we have $\frac{dy}{dx} = -2x$ $-2x = -3 \implies x = 1.5, y = 10 - (1.5)^2 = 7.75.$ Maximal value of $P = 3 \times (1.5) + 7.75 = 12.25.$