Decision Maths 1

Solution Bank

1

Exercise 4A

1 a

There are 4 nodes with odd valency so the graph is *neither* Eulerian nor Semi-Eulerian.

b

There are precisely 2 nodes of odd degree (*G* and *I*) so the graph is *semi-Eulerian*. A possible route starting at *G* and finishing at *I* is: *GHKIJKGHI*

c

All vertices have even valency, so the graph is *Eulerian*. A possible route starting and finishing at *L* is: *LMNPMRPQRL*

2 a i

ii

- **b** i A possible route is: ABCAFCEGHFDA
 - ii A possible route is: ACFABEGBDGFDA

3 a i

Precisely 2 vertices of odd valency (T and U) so semi-Eulerian.

ii

Precisely 2 nodes of odd degree (J and L) so semi-Eulerian.

- **b** i A possible route starting of T and finishing at U is: TRSUWVTU
- ii A possible route starts at J and finishes at L: JKLMJIMNIHNL
- 4 a The number of odd nodes of any graph must be even so this is not possible as there are 3 odd nodes.

Decision Maths 1

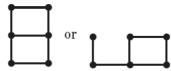
Solution Bank

4 b i
$$2x + 1 + 2x + 4x - 1 + 4x + 6x = 2E = 18$$

 $\Rightarrow 18x = 18$
 $\Rightarrow x = 1$

ii Semi-Eulerian since there are two odd nodes.

c Numerous possible answers e.g.:



5 a Not connected. There are no connections from A, B or C to D or E.

b Neither. To be Eulerian or semi-Eulerian the graph must be connected.

 $A \longrightarrow B$

6 Adding up the numbers in each row, the orders of *A*, *B*, *C*, *D*, *E* are 2, 2, 2, 4, 4 respectively. Since they are all even the graph must be Eulerian.

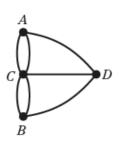
7 **a** n must be odd so that each vertex will have degree n-1 which is even.

b •

8 The example given in the question **1a** is a counterexample. *ABEFCDA* is a Hamiltonian cycle, but the graph is not Eulerian.

Challenge

a



vertex	A	В	C	D
valency	3	3	5	3

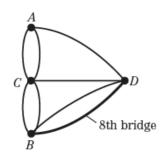
There are more than two odd nodes, so the graph is *not* traversable.

Decision Maths 1

Solution Bank

Challenge

b

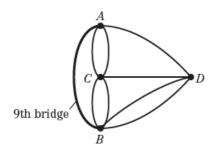


We will start at A and finish at C so these still need to have odd valency. We can only have two odd valencies so B and D must have even valencies (see table).

We need to change the valency of B and of D. So we build a bridge from B to D.

vertex	A	B	C	D
valency with 7 bridges	odd	odd	odd	odd
valency wanted	odd	even	odd	even

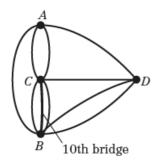
c



We will start at B and finish at C so these vertices need to be the two vertices with odd valency. We need A and D to have even valency (see table). We need to change the valency of node A and of node B. So we build a bridge from A to B.

vertex	A	B	C	D
valency with 8 bridges	odd	even	odd	even
valency wanted	even	odd	odd	even

d



All vertices now need to have even valency. This means we need to change the valencies of nodes *B* and *C*. So the 10th bridge needs to be built from *B* to *C*.

vertex	A	B	C	D
valency with 9 bridges	even	odd	odd	even
valency wanted	even	even	even	even