Solution Bank

Chapter Review 3

1 a i Arcs are labelled with initial letters of the nodes.

CK add to tree SH add to tree CE add to tree EK reject CH add to tree HW add to tree CS reject HQ add to tree QS reject QD add to tree KS reject DW reject EW reject

b

weight: 2953

- 2 a i LT
 - $\begin{bmatrix} MT \\ MQ \\ NQ \\ ST \\ QR \\ NP \end{bmatrix}$
 - ii MQ (3.7) add to tree LT (3.8) add to tree MT (4.1) add to tree NQ (4.7) add to tree MN (5.3) add to tree ST (6.6) add to tree QR (6.6) add to tree NP (6.8) add to tree reject remaining arcs

Solution Bank

2 b Start off the tree with QT and PR then apply Kruskal's algorithm. Prim's algorithm requires the 'growing' tree to be connected at all times. When using Kruskal's algorithm the tree can be built from non-connected sub-trees.

Entrance 4 – Entrance 3 Office - Entrance 1

	$\downarrow 2$	↓5	↓1	↓4	↓3
	Office	Entrance 1	Entrance 2	Entrance 3	Entrance 4
Office	•	1514	(488)	980	945
Entrance 1	(1514)	-	1724	2446	2125
Entrance 2	488	1724	-	884	587
Entrance 3	980	2446	884	-	(523)
Entrance 4	945	2125	(587)	523	-

b

4

Decision Maths 1					Solution Bank							Pearson				
5 a	29 8 8 8 8 8 8	27 29 9 9 9 9	30 27 17 12 12 12	19 30 12 17 14 14	9 19 14 14 17 14	26 9 14 14 14 17	17 26 18 18 18 18 18	18 17 29 19 19 19	8 18 27 24 20 20	12 12 30 20 24 22	24 24 19 22 22 24	20 20 26 26 26 26 26	14 14 24 29 29 26	14 14 20 27 27 27	22 22 22 30 26 29	26 26 26 30 30
	ЕГ	CD	EJ	ГJ	GI	CG	DG	BC	ГI	ΠК	EK	CF	JK	AE	AB	АН

b Order arcs into ascending order of weight and select the arc of least weight to start the tree: *EF* Consider the next arc of least weight, if it would form a cycle with the arcs already selected, reject it. Continue to select an arc of least weight until all vertices are connected to give a minimum spanning tree.

weight: 172

d e = v - 1

6 a Order of arcs

Solution Bank

AC(1) add to tree AD(2) add to tree CD (2) reject CF(3) add to tree FG(3) add to tree HI(3) add to tree KM(3) add to tree JK(3) add to tree AB(4) add to tree DE(4) add to tree IJ(4) add to tree LN(4) add to tree DG(5) reject BE (5) reject IL(5) add to tree MN(5) reject EG(6) reject GI(6) add to tree *IM*(6) FH(7)reject remaining arcs HL(7)EJ(7)

Weight = 45 so 4500 m needed

b Remove FG(7) and replace with DG(5) weight = 47 so 4700 m

Solution Bank

b AHGEIK and AHJIK and ABCK

c The arcs could be roads.

The nodes could be junctions.

The number on each arc could be the distance in km.

The network, together with Dijkstra's algorithm, could be used to find the shortest route from A to K.

Solution Bank

Order of vertex labelling: SCBAEDGFT

Route: SCEFT

411 - 101 = 310	FT
310 - 123 = 187	EF
187 - 85 = 102	CE
102 - 102 = 0	SC

9 a i, ii

Total weight = 72

- b Prim's algorithm grows a minimum spanning tree by adding one vertex at a time. The next vertex chosen to be added is always the shortest edge from the vertex already on the graph. Kruskal's algorithm grows a minimum spanning tree by adding one edge at a time. The edge with the least weight is always the next to be added only if it does not create a cycle.
- **c** Prim's algorithm may be quicker on a graph with a large number of arcs, such as a complete network, as Kruskal's algorithm would require arcs to be sorted by weight.

Solution Bank

10 a Using Prim's algorithm Starting at *A*

in this at 11								
	1	5	3	2	6	8	4	7
	A	В	С	D	Ε	F	G	Н
A		1970	1450	1290	2130	-2010	1770	-2470
В	1 970	-	1390	2850	1110	-3620	440	1 790
С	450	1390	_	1680	2280	3460	960	2890
D	290	2850	1680	_	3330	-2670	-2500	-3740
Ε	2 130 —	110	2280	3330	_	3160	1480	-680
F	2010	3620	3460	-2670	3160	_	3590	-3020
G	1 770	440	9 60	2500	1480	3590	_	-2150
Н	2470	1790	2890	3740	680	3020	2150	

The first arc is AD (1290 km).

The second arc is AC (1450 km).

The third arc is CG (960 km).

The fourth arc is GB (440 km).

The fifth arc is BE (1110 km).

The sixth arc is EH (680 km).

The seventh arc is AF (2010 km).

The weight of the spanning tree is 7940 km.

Solution Bank

10 b Using the nearest neighbour algorithm Starting at *C*

C	6	3	1	7	4	8	2	5
	Α	В	С	D	Ε	F	G	Н
A		1970	1450	1290	2130	2010	1770	2 470
В	1 970		1390	2850	1110	3620	440	1790 -
С	1 450	1390		1680	2280	3460	960	-2890
D	290	2850	1680		3330	2670	2500	3740
Ε	21 30	110	2280	3330	_	3160	1480	680
F	2010	3620	3460	2 670	3160		3590	-3020
G	1770	440	9 60	2500	1480	3590		-2150
Н	2470	1790	2890	3740	680	-3020	2150	

The first arc is CG (960 km). The second arc is GB (440 km). The third arc is BE (1110 km). The fourth arc is EH (680 km). The fifth arc is HA (2470 km). The sixth arc is AD (1290 km). The seventh arc is DF (2670 km). The shortest route is CGBEHADF which has weight 9620 km

c MST \times 2 = 7940 \times 2 = 15 880 km

Nearest neighbour and return = $9620 + 3460 = 13\ 080\ \text{km}$ The method using the nearest neighbour algorithm will give the shortest way.