PMT

b Hence find the series expansion of $\frac{8-6x^2}{(1+x)(2+x)^2}$, |x| < 1, in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (7)

4

C4

SERIES

C4 SERIES

8	a	Expand $(1 - 2x)^{\frac{1}{2}}$, $ x < \frac{1}{2}$, in ascending powers of x up to and including the term in x^2 .	(3)
	b	By substituting $x = 0.0008$ in your expansion, find the square root of 39 correct to	
		7 significant figures.	(4)
9	a	Find the series expansion of $(1 + 8x)^{\frac{1}{3}}$, $ x < \frac{1}{8}$, in ascending powers of x up to and	
		including the term in x^2 , simplifying each term.	(3)
	b	Find the exact fraction k such that	
		$\sqrt[3]{5} = k \sqrt[3]{1.08}$	(2)
	c	Hence, use your answer to part a together with a suitable value of x to obtain an	
		estimate for $\sqrt[3]{5}$, giving your answer to 4 significant figures.	(3)
10		$f(x) \equiv \frac{6x}{x^2 - 4x + 3}, \ x < 1.$	
	a	Express $f(x)$ in partial fractions.	(3)
	b	Show that for small values of <i>x</i> ,	
		$f(x) \approx 2x + \frac{8}{3}x^2 + \frac{26}{9}x^3.$	(5)
11	a	Find the binomial expansion of $(4 + x)^{\frac{1}{2}}$ in ascending powers of x up to and including the term in x^2 and state the set of values of x for which the expansion is valid.	(4)
	b	By substituting $x = \frac{1}{20}$ in your expansion, find an estimate for $\sqrt{5}$, giving your answer to 9 significant figures.	(3)
	c	Obtain the value of $\sqrt{5}$ from your calculator and hence comment on the accuracy of the estimate found in part b .	(2)
12	a	Expand $(1 + 2x)^{-\frac{1}{2}}$, $ x < \frac{1}{2}$, in ascending powers of x up to and including the term in x^3 .	(4)
	b	Hence, show that for small values of <i>x</i> ,	
		$\frac{2-5x}{\sqrt{1+2x}} \approx 2-7x+8x^2-\frac{25}{2}x^3.$	(3)
	c	Solve the equation	
		$\frac{2-5x}{\sqrt{1+2x}} = \sqrt{3} .$	(3)
	d	Use your answers to parts b and c to find an approximate value for $\sqrt{3}$.	(2)
13	ล	Expand $(1 + x)^{-1}$, $ x < 1$, in ascending powers of x up to and including the term in x^3 .	(2)
10	b	Hence, write down the first four terms in the expansion in ascending powers of x of $(1 + bx)^{-1}$, where b is a constant, for $ bx < 1$.	(1)
	Gi	iven that in the series expansion of	(1)
	0		
		$\frac{1+ax}{1+bx}, \ bx < 1,$	
	-		

the coefficient of x is -4 and the coefficient of x^2 is 12,

- **c** find the values of the constants *a* and *b*,
- **d** find the coefficient of x^3 in the expansion.

(5) (2)