where a and b are integers to be found.

 $\int_{3}^{4} \frac{1}{x^{2} - 3x + 2} \, \mathrm{d}x = \ln \frac{a}{b},$

a Express $\frac{1}{x^2 - 3x + 2}$ in partial fractions.

2 Evaluate

b Show that

C4

1

$$\int_0^{\frac{\pi}{6}} \cos x \cos 3x \, \mathrm{d}x. \tag{6}$$

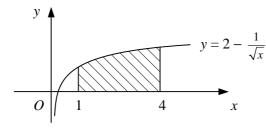
3 a Find the quotient and remainder obtained in dividing $(x^2 + x - 1)$ by (x - 1). (3)

b Hence, show that

$$\int \frac{x^2 + x - 1}{x - 1} dx = \frac{1}{2}x^2 + 2x + \ln|x - 1| + c,$$

where c is an arbitrary constant.

4



The diagram shows the curve with equation $y = 2 - \frac{1}{\sqrt{x}}$.

The shaded region bounded by the curve, the *x*-axis and the lines x = 1 and x = 4 is rotated through 360° about the *x*-axis to form the solid *S*.

a Show that the volume of S is $2\pi(2 + \ln 2)$. (6)

S is used to model the shape of a container with 1 unit on each axis representing 10 cm.

b Find the volume of the container correct to 3 significant figures. (2)

5 a Use integration by parts to find $\int x \ln x \, dx$.

b Given that y = 4 when x = 2, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy\ln x, \quad x > 0, \quad y > 0,$$

and hence, find the exact value of y when x = 1. (5)

- 6 a Evaluate $\int_{0}^{\frac{\pi}{3}} \sin x \sec^2 x \, dx.$ (4)
 - **b** Using the substitution $u = \cos \theta$, or otherwise, show that

$$\int_0^{\frac{\pi}{4}} \frac{\sin\theta}{\cos^4\theta} \, \mathrm{d}\theta = a + b\sqrt{2} \,,$$

where *a* and *b* are rational.

(3)

(5)

(2)

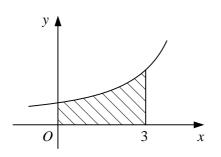
(4)

(6)

(3)

(3)

7



The diagram shows part of the curve with parametric equations

$$x = 2t + 1$$
, $y = \frac{1}{2-t}$, $t \neq 2$.

The shaded region is bounded by the curve, the coordinate axes and the line x = 3.

- **a** Find the value of the parameter t at the points where x = 0 and where x = 3. (2)
- **b** Show that the area of the shaded region is $2 \ln \frac{5}{2}$. (5)
- c Find the exact volume of the solid formed when the shaded region is rotated completely about the *x*-axis. (5)
- 8 **a** Using integration by parts, find

$$6x \cos 3x \, dx. \tag{5}$$

b Use the substitution $x = 2 \sin u$ to show that

$$\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} dx = \frac{\pi}{3}.$$
 (5)

9 In an experiment to investigate the formation of ice on a body of water, a thin circular disc of ice is placed on the surface of a tank of water and the surrounding air temperature is kept constant at -5° C.

In a model of the situation, it is assumed that the disc of ice remains circular and that its area, $A \text{ cm}^2$ after *t* minutes, increases at a rate proportional to its perimeter.

a Show that

$$\frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{A} \; ,$$

where k is a positive constant.

 ${\bf b}~$ Show that the general solution of this differential equation is

$$A = (pt + q)^{2},$$

p and *q* are constants. (4)

where p and q are constants.

Given that when t = 0, A = 25 and that when t = 20, A = 40,

c find how long it takes for the area to increase to 50 cm^2 . (5)

10

$$f(x) \equiv \frac{5x+1}{(1-x)(1+2x)}$$

a Express f(x) in partial fractions.

- **b** Find $\int_{0}^{\frac{1}{2}} f(x) dx$, giving your answer in the form $k \ln 2$. (4)
- c Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , for $|x| < \frac{1}{2}$. (6)

© Solomon Press