Worksheet J

The diagram shows the curve $y = x^2 + 1$ which passes through the point A (1, 2).

a Find an equation of the normal to the curve at the point A.

The normal to the curve at A meets the x-axis at the point B as shown.

b Find the coordinates of *B*.

INTEGRATION

The shaded region bounded by the curve, the coordinate axes and the line *AB* is rotated through 2π radians about the *x*-axis.

c Show that the volume of the solid formed is $\frac{36}{5}\pi$.

2

C4

1

The shaded region in the diagram is bounded by the curve with equation $y = 4x + \frac{9}{x}$,

the *x*-axis and the lines x = 1 and x = e.

- **a** Find the area of the shaded region, giving your answer in terms of e.
- **b** Find, to 3 significant figures, the volume of the solid formed when the shaded region is rotated completely about the *x*-axis.
- 3 The region enclosed by the given curve, the *x*-axis and the given ordinates is rotated through 2π radians about the *x*-axis. Find the exact volume of the solid formed in each case.

a	$y = \operatorname{cosec} x$,	$x=\frac{\pi}{6},$	$x = \frac{\pi}{3}$	b $y = \sqrt{\frac{x+3}{x+2}}$,	<i>x</i> = 1,	<i>x</i> = 4
c	$y = 1 + \cos 2x,$	<i>x</i> = 0,	$x = \frac{\pi}{4}$	d $y = x^{\frac{1}{2}} e^{2-x}$,	<i>x</i> = 1,	<i>x</i> = 2

4

The shaded region in the diagram, bounded by the curve $y = xe^{-\frac{1}{2}x}$, the *x*-axis and the line x = 1, is rotated through 360° about the *x*-axis.

Show that the volume of the solid formed is $\pi(2-5e^{-1})$.

© Solomon Press

5

6

The diagram shows part of the curve with equation $y = 2 \sin x + \cos x$.

The shaded region is bounded by the curve in the interval $0 \le x < \frac{\pi}{2}$, the positive coordinate axes and the line $x = \frac{\pi}{2}$.

- **a** Find the area of the shaded region.
- **b** Show that the volume of the solid formed when the shaded region is rotated through 2π radians about the *x*-axis is $\frac{1}{4}\pi(5\pi+8)$.

The diagram shows part of the curve with parametric equations

 $x = \tan \theta$, $y = \sin 2\theta$, $0 \le \theta < \frac{\pi}{2}$.

The shaded region is bounded by the curve, the *x*-axis and the line x = 1.

a Write down the value of the parameter θ at the points where x = 0 and where x = 1.

The shaded region is rotated through 2π radians about the *x*-axis.

b Show that the volume of the solid formed is given by

$$4\pi\int_0^{\frac{\pi}{4}}\sin^2\theta \ \mathrm{d}\theta.$$

c Evaluate this integral.

7

The diagram shows part of the curve with parametric equations

 $x = t^2 - 1, y = t(t+1), t \ge 0.$

a Find the value of the parameter t at the points where the curve meets the coordinate axes.

The shaded region bounded by the curve and the coordinate axes is rotated through 2π radians about the *x*-axis.

b Find the volume of the solid formed, giving your answer in terms of π .