	Questi	on	Answer	Marks	Guidance
1			$\cos 2\theta = 1 - 2\sin^2 \theta$	M1*	$\cos 2\theta = \pm 1 \pm 2 \sin^2 \theta$ (maybe implied in substitution)
			$(6\cos 2\theta + \sin \theta =) 6 - 12\sin^2 \theta + \sin \theta$	A1	
			$6\cos 2\theta + \sin \theta = 0$ $\Rightarrow 12\sin^2 \theta - \sin \theta - 6 = 0$ $\Rightarrow (4\sin \theta - 3)(3\sin \theta + 2) = 0$	M1dep*	Use of correct quadratic equation formula or factorising or comp. the square on their three term quadratic in $\sin\theta$ (see guidance in question 1 for awarding this method mark) provided $b^2 - 4ac \ge 0$
			$\Rightarrow \sin \theta = 3/4 \text{ or } -2/3$	A1	www
				В1	First correct solution to 1 dp or better (eg 48.59° etc)
				B1	Three correct solutions
			$\Rightarrow \sin \theta = 3/4, \ \theta = 48.6^{\circ}, \ 131.4^{\circ}$ $\sin \theta = -2/3, \ \theta = 221.8^{\circ}, \ 318.2^{\circ}$	B1	All four correct solutions and no others in the range
			5110 273, 0 221.0 , 310.2		Ignore solutions outside the range
					SC Award max B1B1B0 for answers in radians (0.85, 2.29, 3.87, 5.55 or better – so one correct B1, three correct B1). Award max B1 if there are extra solutions in the range with radians
					SC If M1M1 awarded and both values of $ \sin \theta \le 1$ but B0B0B0 then
				[7]	award B1 only for evidence of using $\sin \theta = \sin(180 - \theta)$
				[.]	

Question	Answer	Marks	Guidance
2 (i)	EITHER Use of $\cos = 1/\sec$ (or $\sin = 1/\csc$) From RHS $\frac{1 - \tan \alpha \tan \beta}{\sec \alpha \sec \beta}$	B1	Must be used
	$= \frac{1 - \sin \alpha / \cos \alpha . \sin \beta / \cos \beta}{1 / \cos \alpha . 1 / \cos \beta}$ $= \cos \alpha \cos \beta (1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta})$	M1	Substituting and simplifying as far as having no fractions within a fraction [need more than $\frac{1-tt}{\sec\sec\sec} = cc - ss$ ie an intermediate step that can lead to cc-ss]
	$= \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $= \cos(\alpha + \beta)$	A1	Convincing simplification and correct use of $cos(\alpha + \beta)$ Answer given
	OR From LHS, $\cos = 1/\sec \text{ or } \sin = 1/\csc \text{ used}$ $\cos(\alpha + \beta)$ $= \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $= \frac{1}{\sec \alpha \sec \beta} - \sin \alpha \sin \beta$ $= \frac{1 - \sec \alpha \sin \alpha \sec \beta \sin \beta}{\sec \alpha \sec \beta}$	B1	Correct angle formula and substitution and simplification to one term OR eg $\cos \alpha \cos \beta - \sin \alpha \sin \beta$ $= \cos \alpha \cos \beta (1 - \tan \alpha \tan \beta)$
	$= \frac{1 - \tan \alpha \tan \beta}{\sec \alpha \sec \beta}$	A1 [3]	Simplifying to final answer www Answer given Or any equivalent work but must have more than cc—ss = answer.

(Question		Answer	Marks	Guidance	
2	(ii)		$\beta = \alpha$ $\cos 2\alpha = \frac{1 - \tan^2 \alpha}{\sec^2 \alpha}$	M1	$\beta = \alpha$ used, Need to see $\sec^2 \alpha$	
			$=\frac{1-\tan^2\alpha}{1+\tan^2\alpha}.$	A1	Use of $\sec^2 \alpha = 1 + \tan^2 \alpha$ to give required result Answer Given	
			OR, without Hence, $\cos 2\alpha = \cos^2 \alpha (1 - \frac{\sin^2 \alpha}{\cos^2 \alpha})$ $= \frac{1}{\sec^2 \alpha} (1 - \tan^2 \alpha)$ $= \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$	M1	Use of $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ soi Simplifying and using $\sec^2 \alpha = 1 + \tan^2 \alpha$ to final answer Answer Given Accept working in reverse to show RHS=LHS, or showing equivalent	
2	(iii)		$\cos 2\theta = \frac{1}{2}$	[2] M1	Soi or from $tan^2\theta = 1/3$ oe from $sin^2\theta$ or $cos^2\theta$	
			$2\theta = 60^{\circ}, 300^{\circ}$ $\theta = 30^{\circ}, 150^{\circ}$	A1 A1	First correct solution Second correct solution and no others in the range SC B1 for $\pi/6$ and $5\pi/6$ and no others in the range	

Question	Answer		Guidance
3	$\sin(x + 45^\circ) = \sin x \cos 45^\circ + \cos x \sin 45^\circ$ = \sin x \cdot 1/\sqrt{2} + \cos x \cdot 1/\sqrt{2} = (1/\sqrt{2})(\sin x + \cos x) = 2\cos x	M1 A1	Use of correct compound angle formula
	$\Rightarrow \sin x + \cos x = 2\sqrt{2}\cos x *$	A1	Since AG, $\sin x \cos 45^{\circ} + \cos x \sin 45^{\circ} = 2\cos x$ $\sin x + \cos x = 2\sqrt{2}\cos x$ only gets M1 need the second line or statement of $\cos 45^{\circ} = \sin 45^{\circ} = 1/\sqrt{2}$ oe as an intermediate step to get A1 A1
	$\Rightarrow \sin x = (2\sqrt{2} - 1)\cos x$ $\Rightarrow \tan x = 2\sqrt{2} - 1$ $\Rightarrow x = 61.32^{\circ},$ 241.32°	M1 A1 A1	terms collected and $\tan x = \sin x / \cos x$ used for first correct solution for second correct solution and no others in the range 2dp but allow overspecification ignore solutions outside the range SC A1 for both 61.3° and 241.3° SC A1 for both 1.07 and 4.21 radians (or better) SC A1 for incorrect answers that round to 61.3° and 180° + their ans eg 61.33° and 241.33° Do not award SC marks if there are extra solutions in the range.

4	$\tan(\theta + 45) = \frac{\tan \theta + \tan 45}{1 - \tan \theta \tan 45}$ $= \frac{\tan \theta + 1}{1 - \tan \theta}$	M1 A1	oe using sin/cos
\Rightarrow	$\frac{\tan\theta + 1}{1 - \tan\theta} = 1 - 2\tan\theta$		
\Rightarrow	$1 + \tan \theta = (1 - 2\tan \theta)(1 - \tan \theta)$ $= 1 - 3\tan \theta + 2\tan^2 \theta$ $0 = 2\tan^2 \theta - 4\tan \theta = 2\tan \theta(\tan \theta - 2)$	M1 A1 M1	multiplying up and expanding any correct one line equation solving quadratic for $\tan \theta$ oe
\Rightarrow \Rightarrow	$\tan \theta = 0 \text{ or } 2$ $\theta = 0 \text{ or } 63.43$	A1A1 [7]	www -1 extra solutions in the range

5	$\sin(\theta + \alpha) = 2\sin\theta$		Using correct Compound angle formula
\Rightarrow	$\sin \theta \cos \alpha + \cos \theta \sin \alpha = 2 \sin \theta$	M1	in a valid equation
\Rightarrow	$\tan \theta \cos \alpha + \sin \alpha = 2 \tan \theta$	M1	dividing by $\cos \theta$
\Rightarrow	$\sin \alpha = 2 \tan \theta - \tan \theta \cos \alpha$		
	$= \tan \theta (2 - \cos \alpha)$	M1	collecting terms in tan θ or $\sin \theta$ or
\Rightarrow	$\tan \theta = \sin \alpha *$		dividing by $\tan \theta$ oe
	$\frac{1}{2-\cos\alpha}$	E1	www (can be all achieved for the method
	$\sin(\theta + 40^{\circ}) = 2\sin\theta$		in reverse)
\Rightarrow	$\tan \theta = \frac{\sin 40}{\cos \theta} = 0.5209$	3.41	
	$2-\cos 40$	M1	
\Rightarrow	$\theta = 27.5^{\circ}, 207.5^{\circ}$		$\tan \theta = \frac{\sin 40}{\cos \theta}$
		A1 A1	$2 - \cos 40$
		[7]	-1 if given in radian
			-1 extra solutions in the rang