1 Fig. 3 shows the curve $y=x^{3}+\sqrt{(\sin x)}$ for $0 \leqslant x \leqslant \frac{\pi}{4}$.

Fig. 3
(i) Use the trapezium rule with 4 strips to estimate the area of the region bounded by the curve, the x-axis and the line $x=\frac{\pi}{4}$, giving your answer to 3 decimal places.
(ii) Suppose the number of strips in the trapezium rule is increased. Without doing further calculations, state, with a reason, whether the area estimate increases, decreases, or it is not possible to say.

2 Fig. 2 shows the curve $y=\overline{1+x^{2}}$.

Fig. 2
(i) The following table gives some values of x and y.

x	0	0.25	0.5	0.75	1
y	1	1.0308		1.25	1.4142

Find the missing value of y, giving your answer correct to 4 decimal places.
Hence show that, using the trapezium rule with four strips, the shaded area is approximately 1.151 square units.
(ii) Jenny uses a trapezium rule with 8 strips, and obtains a value of 1.158 square units. Explain why she must have made a mistake.
(iii) The shaded area is rotated through 360° about the x-axis. Find the exact volume of the solid of revolution formed.

3 Fig. 4 shows the curve $y=\sqrt{1+\mathrm{e}^{2 x}}$, and the region between the curve, the x-axis, the y-axis and the line $x=2$.

Fig. 4
(a) Find the exact volume of revolution when the shaded region is rotated through 360° about the x-axis.
(b) (i) Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.

x	0	0.5	1	1.5	2
y		1.9283	2.8964	4.5919	

(ii) The trapezium rule for $\int_{0}^{2} \sqrt{1+\mathrm{e}^{2 x}} \mathrm{~d} x$ with 8 and 16 strips gives 6.797 and 6.823 , although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.

4 (i) Complete the table of values for the curve $y=\sqrt{\cos x}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y		0.9612	0.8409		

Hence use the trapezium rule with strip width $h=\frac{\pi}{8}$ to estimate the value of the integral $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} d x$, giving your answer to 3 decimal places.

Fig. 4 shows the curve $y=\sqrt{\cos x}$ for $0 \leqslant x \leqslant \frac{\pi}{2}$.

Fig. 4
(ii) State, with a reason, whether the trapezium rule with a strip width of $\frac{\pi}{16}$ would give a larger or smaller estimate of the integral.

5 (i) Use the trapezium rule with four strips to estimate $\int_{-2}^{2} \sqrt{1+\mathrm{e}^{x}} \mathrm{~d} x$, showing your working. [4]
Fig. 1 shows a sketch of $y=\sqrt{1+\mathrm{e}^{x}}$.

Fig. 1
(ii) Suppose that the trapezium rule is used with more strips than in part (i) to estimate $\int_{-2}^{2} \sqrt{1+\mathrm{e}^{x}} \mathrm{~d} x$. State, with a reason but no further calculation, whether this would give a larger or smaller estimate.

6 Two students are trying to evaluate the integral $\int_{1}^{2} \sqrt{1+\mathrm{e}^{-x}} \mathrm{~d} x$.

Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.

x	1	1.5	2
$\sqrt{1+\mathrm{e}^{-x}}$	1.1696	1.1060	1.0655

(i) Complete the calculation, giving your answer to 3 significant figures.

Anish uses a binomial approximation for $\sqrt{1+\mathrm{e}^{-x}}$ and then integrates this.
(ii) Show that, provided e^{-x} is suitably small, $\left(1+\mathrm{e}^{-x}\right)^{\frac{1}{2}} \approx 1+\frac{1}{2} \mathrm{e}^{-x} \quad \frac{1}{8} \mathrm{e}^{-2 x}$.
(iii) Use this result to evaluate $\int_{1}^{2} \sqrt{1+\mathrm{e}^{-x}} \mathrm{~d} x$ approximately, giving your answer to 3 significant figures.

